



# UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER 2017

**PROGRAMME:** 

BSC. ABE

COURSE CODE: ABE104

TITLE OF PAPER: ENGINEERING MATHEMATICS

TIME ALLOWED: TWO (2) HOURS

SPECIAL MATERIAL REQUIRED: CALCULATOR

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

#### **SECTION ONE: COMPULSORY**

### **QUESTION ONE**

| (a) | Eva  | luate the f          | ollowing, each correct to three (3) significant figures; |           |
|-----|------|----------------------|----------------------------------------------------------|-----------|
|     | i)   | 4.7.826 +            | 0.02713                                                  | (2 marks) |
|     | ii)  | 21.93 x (            |                                                          | (2 marks) |
|     | iii) |                      | $(6.21 + 2.95)^2$                                        | (2 marks) |
|     | iv)  | $46.27^2 -$          |                                                          | (2 marks) |
|     | v)   | $3.72 e^{0.18}$      |                                                          | (2 marks) |
|     | vi)  | $53.2 e^{-1.4}$      |                                                          | (3 marks) |
|     | vii) | $\frac{5}{122}e^{7}$ |                                                          | (2 marks) |

## b) Evaluate the following, correct to three (3) decimal places;

i) 
$$\left(\frac{3.60}{1.92}\right)^2 + \left(\frac{5.40}{2.45}\right)^2$$
 (3 Marks)  
ii)  $\frac{15}{7.6^2 - 4.8^2}$  (3 Marks)

c) Remove the brackets and simplify the following expressions; i)  $2a - [3\{2(4a - b) - 5(a + 2b)\} + 4a]$ 

ii) 
$$\frac{(x^2y^{\frac{1}{2}})(\sqrt{x^3y^2})}{(x^5y^3)^{1/2}}$$
 (3 marks)

(3 marks)

iii) 
$$\frac{1}{(\frac{4}{7} \times 2\frac{1}{4})} \div (\frac{1}{3} + \frac{1}{5}) + 2\frac{7}{24}$$
 (3 marks)

d) The electrical resistance R, of a piece of wire is inversely proportional to the cross-sectional area A. When A = 5 mm<sup>2</sup>, R = 7.02 ohms. Determine the following;
i) The coefficient of proportionality (2 mark)

1) The coefficient of proportionality(2 marks)ii) The cross sectional area when the resistance is 4 ohms.(3 marks)

e) Solve the following inequalities i) |3r + 1| < 4

(3 marks)  
(i) 
$$\frac{2x+3}{x+2} \le 1$$
 (2 marks)

#### SECTION II: ANSWER ANY TWO QUESTIONS

#### **QUESTION TWO**

- (a) Use the remainder theorem to determine the remainder when  $(3x^3 2x^2 + x 5)$ is divided by (x + 2) = - (7 marks)
- (b) Resolve  $\frac{11-3x}{x^2+2x-3}$  into partial fractions. (7 Marks)
- (c) Solve the following equations

i) 
$$\frac{1}{5}(2f-3) + \frac{1}{6}(f-4) + \frac{2}{15} = 0$$
 (6 marks)

- ii)  $X^2 6x + 9 = 0$  (4 marks)
- iii) Solve the following simultaneous equations 3x 2y = 12 and x + 3y = -17 (6 marks)

### **QUESTION THREE**

- (a) Transpose the formula  $P = \frac{a^2 X + a^2 Y}{r}$  to make a the subject (6 Marks)
- (b) The extension X(m) of an aluminium tie bar of length L(m) and cross –sectional  $A(m^2)$  when carrying a load of F Newtons is given by the modulus of elasticity  $E = \frac{F.L}{A.x}$ . Find the extension of the tie bar (in mm) when  $E = 70 \times 10^9$  N/m,  $F = 20 \times 10^6$  N, A = 0.1 m<sup>2</sup> and L = 1.4 m. (6 Marks)
- (c) Differentiate the following with respect to X;  $Y = \frac{2}{3}X^3 - \frac{4}{X^3} + 4\sqrt{X^5} + 7$ (8 Marks)
- (d) Integrate the following equation  $\int \left(4 + \frac{3}{7}X 6X^2\right) dX$  (10 Marks)

## **QUESTION FOUR**

| (a) | i)Solve the equation $3.72 = \ln \frac{5.14}{x}$ | to find the value of X                     | (6 Marks) |
|-----|--------------------------------------------------|--------------------------------------------|-----------|
|     | iii)Evaluate the following;                      | log <sub>3</sub> 9 and log <sub>16</sub> 8 | (4 marks) |

- (b) Plot a graph of  $Y = 2X^2$  between the values of -3 < X < 3 and hence solve the equation  $2X^2 - 8 = 0$  and  $2X^2 - X - 3 = 0$  (10 Marks)
- (c) Use the Newton Raphson method to determine the positive roots of the quadratic equation  $5X^2 + 11X 17 = 0$ , correct to 3 significant figures. Check the value of the roots by using the quadratic formula. (10 Marks)