PAGE 1 OF 5

UNIVERSITY OF SWAZILAND FINAL EXAMINATION PAPER

PROGRAMME: BSC ABE. II

COURSE CODE: ABE201

TITLE OF PAPER: AGROCLIMATOLOGY

TIME ALLOWED: TWO (2) HOURS

SPECIAL MATERIAL REQUIRED: NONE

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

PAGE 2 OF 5

SECTION I COMPULSORY

QUESTION 1

- a) Discuss the following laws as used to explain the behaviour of electromagnetic radiation:
 - (i) Stefan-Boltzman Law;
 - (ii) Wien's Law;
 - (iii) Kirchoff's Law;

[15 marks]

- b) Using graph in Appendix 1, determine:
 - (i) the saturated vapour pressure at 30 °C;
 - (ii) the actual vapour pressure, when the relative humidity (RH) is 65 %;
 - (iii) vapour pressure deficit (VPD) under conditions in (i) and (ii);
 - (iv) the temperature at which 100 % RH would be achieved, assuming no more water vapour is added to the air.

[12 marks]

c) Below are recorded temperatures (maximum and minimum) for Bhunya area between February 19 and February 21.

Date	Maximum °C	Minimum °C	
19 February	29.9	12.6	
20 February	32.1	11.2	
21 February	34	11.1	

Calculate the modelled air temperature at 10 am and 5 pm on the 20th February.

 $\Gamma(t) = 0.44 - 0.46 \sin(\omega t + 0.9) + 0.11 \sin(2\omega t + 0.9)$

where $\omega = \pi/12$, and t is the time of day in hours (t = 12 at solar noon)

The temperature for any time of day is given by:

$T(t) = T_{x, i-1}\Gamma(t) + T_{n, i}[1 - \Gamma(t)]$	$0 < t \le 5$
$T(t) = T_{x,i}\Gamma(t) + T_{n,i}[1 - \Gamma(t)]$	$5 < t \le 14$
$T(t) = T_{x,i}\Gamma(t) + T_{n,i+1}[1 - \Gamma(t)]$	$14 < t \leq 24$

 T_x is the daily maximum temperature and T_n is the minimum temperature.

[13 marks]

PAGE 3 OF 5

SECTION II ANSWER ANY TWO QUESTIONS

QUESTION 2

a) With the aid of a diagram, discuss the three (3) stages of evaporation from a soil surface, from the moment just after a rainfall event to when most of the water has been removed from the soil.

[15 marks]

- b) Explain how the following climatic parameters influence evapotranspiration:
 - (i) Solar radiation
 - (ii) Air temperature
 - (iii) Wind

[15 marks]

QUESTION 3

a) Discuss with illustrations, the process of enhanced greenhouse effect as a cause of a changing climate.

[15 marks]

b) According to the Food and Agriculture Organisation (FAO), "climate smart agriculture (CSA) is an approach for developing agricultural strategies to secure sustainable food security under climate change". Discuss at least 5 of these strategies or techniques.

[15 marks]

PAGE 4 OF 5

QUESTION 4

a) Explain how the following are different from each other:

- (i) How heat is 'trapped' in a greenhouse and how it is 'trapped' in the atmosphere
- (ii) Lapse rate and dry adiabatic cooling
- (iii) Effective rainfall and dependable rainfall
- (iv) Reference evapotranspiration and crop evapotranspiration

[20 marks]

b) Explain the heat unit concept as a crop production theory; explaining how the heat units accumulate, also outlining the theory's shortcomings.

[10 marks]

22

