UNIVERSITY OF SWAZILAND
FACULTY OF COMMERCE

DEPARMENT OF BUSINESS ADMINISTRATION
FINAL XAMINATION PAPER; FULL TIME STUDENTS
MAY 2013
TITLE OF PAPER : MANAGEMENT SCIENCE11
COURSE CODE : BA 310/BA407
TIME ALLOCATED

TOTAL MARKS : THREE [3] HOURS
:

INSTRUCTIONS

1. TOTAL NUMBER OF QUESTIONS IN THIS PAPER IS 4
2. THE PAPER CONSISTS OF SECTION A AND SECTION B
3. ANSWER ALL QUESTIONS IN SECTION A AND ANY TWO [2] QUESTIONS IN SECTION B.
4. THE MARKS ALLOCATED FOR A QUESTION/PART OF A QUESTION ARE INDICATED AT THE END OF EACH QUESTION/PART OF A QUESTION.
5. NOTE: MAXIMUM MARKS WILL BE AWARDED FOR QUALITY, LAYOUT, ACCURACY, AND GOOD PRESENTATION OF WORK.

THIS PAPER MUST NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

SECTION A : ANSWER ALL QUESTIONS IN THIS SECTION [50 MARKS].

QUESTION 1.

a. Matsapha Manufacturing Company presently has factories in Siteki and Luyengo, and has got three warehouses at Manzini, Mbabane and Big Bend. A new factory at Hlathikulu is being proposed to increase factory capacity. Dludlu, the company's Chairman wants to know what the company's monthly shipping costs will be with the new factory located at Hlathikulu. The monthly capacities of the old and new factories, the monthly warehouse requirements, and the transportation costs per unit from each factory to each warehouse are shown below;

Monthly factory Capacity (000)			Monthly warehouse requirements(000 tons)	
Siteki	400	Manzini	300	
Luyengo	1000	Mbabane	900	
Hlathikulu	600	Big Bend	800	
Total	$\mathbf{2 0 0 0}$	Total	$\mathbf{2 0 0 0}$	

Transportation costs table

Factories	Warehouses		
	Manzini	Mbabane	Big Bend
Siteki	E31	E21	E42
Luyengo	E 20	E21	E 30
Hlathikulu	E 23	E 20	E15

i. Use both the Lowest Cost Cell method and the North West Corner method to determine the initial monthly transportation cost when the new factory is located at Hlathikulu.
ii. Apply the Stepping stone method to improve the transportation cost under the North West corner method and indicate how many units must be shipped from each factory to each warehouse after the new factory has been built and what the optimal the cost will be (16 marks)
[Total Marks 28]
b. To complete the construction of UNISWA transport workshop, the project Director has laid out the major steps and seven activities involved. The activities have been labelled A to G in the following table, which also shows their estimated completion times (in weeks) and immediate predecessors. (see table of activities below for details)

Project activities

Activity	a		m	b
Immediate				
A	1	2	3	----
B	2	3	4	---
C	4	5	6	A
D	8	9	10	B
E	2	5	8	C,D
F	4	5	6	B
G	1	2	3	E

i. Draw diagram of all the transport workshop project activities
(6 marks)
ii. Calculate the expected time and variance for each activity
iii. Which activities fall along the critical path for the entire transport workshop project?
iv. Determine the project's expected completion time

SECTION B: CHOOSE TWO (2) QUESTIONS OF YOUR CHOICE FROM THIS

SECTION. EACH QUESTION CARRIES 25 MARKS.

OUESTION 2.

a. UNISWA Maintenance unit employs five joiners. Each joiner has different abilities and skills and takes different amounts of time to do each job. At present there are five jobs to be allocated. The time taken for each job by each person is given below.

Time per job (hours)

	Job 1.	Job 2.	Job 3.	Job 4.	Job 5.
M1	25	16	15	14	13
M2	25	17	18	23	15
M3	30	15	20	19	14
M4	27	20	22	25	12
M5	29	19	17	32	10

The jobs have to be assigned one job to one joiner. How should this be done in order to minimize the total man time needed to finish all of the jobs? (15 marks).
b. Assuming UNISWA Maintenance Department can employ an additional part time joiner who can do the same jobs in times shown in the following table; how would this affect the assignment of the jobs to minimize total time?

Time per job (hours)

	Job 1.	Job 2.	Job 3.	Job 4.	Job 5.
M6	28	16	19	16	15

[Total Marks 25]

QUESTION 3.

a. Gcebile Dlamini has a car repairs workshop in Mbabane that also specialises on alarm system installations. Dlamini's mechanic Phindile Vuyo is able to install new alarm systems at an average rate of 3 per hour, or about 1 every 20 minutes. Customers needing this service arrive at the shop at an average of 2 per hour. The shop owner studied Management Science and Operations Management at UNISWA in which she learnt about the Queuing Theory. She therefore feels that all the conditions for a single channel model are satisfied in the above example. Can you now assist her to calculate the values of the operating characteristics of the Queuing model listed below?
i. Average number of customers in the system (L)
ii. The average time a customer spends in the system(W)
iii. Average number of customers in the queue(Lq)
iv. Average waiting time the customer spends waiting in the queue(Wq)
v. The probability that the service facility is being used(p)
vi. Percentage idle time (P 0)
(12 marks).
b. The owner of an old fashioned restaurant that specialised on Chinese food, Biggy Ndlovu contemplates adding traditional Swazi food which has become popular these days. The required expansion means Biggy has to rent additional space that will cost E6, 000 per month. Variable costs will be E2 per plate and traditional food would retail for E7.00 per plate.
i. How many pies must be sold in order to break even?
ii. What would the profit (loss) be if 1,000 plates of traditional food are sold in a month?
iii. How many plates of traditional food must be sold to realise a profit of $\mathrm{E}, 000$?
iv. If 2,000 plates can be sold, and a profit target is E5, 000 , what price should be charged per plate?
(13 marks)
[Total Marks 25]

QUESTION 4.

i. Mabhensane plumping and heating maintains a stock of 125 litres hot water bottles that it sells to home owners and installs for them. Owner, Harry Mkize likes the idea of having a large supply on hand to meet customer demand, but he also recognises that it is expensive to do so. He examines the water bottles sales over the past 50 weeks and notes the following;

Hot water heater sales per week	Number of weeks this number was sold
4	6
5	5
6	9
7	12
8	8
9	7
10	3
	Total

a. If Mabhensane maintains a constant supply of 8 hot water bottles in any given week, how many times will he be out of stock during a 20 week simulation? Use random numbers from the seventh column of the attached table, beginning with the random digit 10
(10 marks).
b. What is the number of average sales per week, including stock outs over the 20 week period?
c. Using the expectation (non simulation) method what is the expected number of sales per week? How does the answer you get here compare with the answer you get in (b) above?
ii. Use Vogel's Approximation Method to determine the initial transportation cost for a company that has to move stocks from supply sources 1 (120 tonnes), and supply sources 2 and 3, (80 tonnes) each. The stocks are being moved to destinations A, B, and C with restricted requirements of 150 tonnes, 70 tonnes, and 60 tonnes respectively

Transportation rates are as per the table below;

From/To	A	B	C
1	E8	E5	E6
2	15	10	12
3	3	9	10

TABLE 15.5

Source: Excerpted from A Million Random Digits with 100,000 Nomal Deviates (New York: Free Press, 1955), p. 7, with permission of the Rand Corporation.

