```
UNIVERSITY OF SWAZILAND
FACULTY OF COMMERCE
DEPARMENT OF BUSINESS ADMINISTRATION
SUPPLEMENTARY EXAMINATION PAPER; F/T STUDENTS
JULY 2014
TITLE OF PAPER : MANAGEMENT SCIENCE 11
    COURSE CODE : BA 310
TIME ALLOCATED : THREE [3] HOURS
    TOTALMARKS : 100 MARKS
INSTRUCTIONS
1. TOTAL NUMBER OF QUESTIONS IN THIS PAPER IS 4
2. THE PAPER CONSISTS OF SECTION A AND SECTION B
3. ANSWER ALL THE QUESTIONS IN SECTION A AND ANY THREE [3] QUESTIONS IN SECTION B.
4. THE MARKS ALLOCATED FOR A QUESTION/PART OF A QUESTION ARE INDICATED AT THE END OF EACH QUESTION/PART OF QUESTION.
5. NOTE: MAXIMUM MARKS WILL BE AWARDED FOR QUALITY, LAYOUT, ACCURACY, AND GOOD PRESENTATION OF WORK.
THIS PAPER MUST NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR
```


SECTION A. ANSWER ALL QUESTIONS IN THIS SECTION.

QUESTION 1.

1.1. A security company wishes to maximize efficiency at the different security points at a local hospital. There are four security points and four security personnel. The table below shows efficiency levels that can be achieved if any of the security personnel is assigned to guard some point. You are required to advise head of security on assignments that are likely to yield highest efficiency for the company.

SECURITY POINTS

SECURITY GUARD	A	B	C	D
1	20	60	50	55
2	60	30	80	75
3	80	100	90	80
4	65	80	75	70

(18 marks)
1.2. The management of a company is considering the introduction of a new product. The fixed cost to begin production of the new product is E30, 000.The variable cost for the product is expected to be between E16 and E24 with the most likely value of E20 per unit. The product will sell for E50 per unit. Demand for the product is expected to range from 300 to 2,100 units, with 1200 units the most likely demand.
a. Develop the profit model for this product.(5)
b. Provide base case, worst case, and best case analysis.(12)
1.3
1.3. The North -South highway passing through Matsapha can accommodate vehicle capacities shown in the network diagram below. Use the network analysis (maximal flow) technique to determine if the highway system can accommodate a North- South flow of 15,000 cars per hour.Note that numbers in the above network represent cars in thousands.

(15 marks)
[Total 50 Marks]

SECTION B: ANSWER TWO QUESTIONS OF YOUR CHOICE FROM THIS SECTION.

QUESTION 2.

A Swaziland company that distribute very popular industrial raw materials has establish plants at Manzini, Matsapha and Malkerns as follows;

SWAZI Plant	$\mathbf{3}$ moths capacity (units)
Manzini	5,000
Matsapha	6,000
Malkerns	2,500

The product is distributed through four distribution outlets at $1,2,3$, and 4 whose forecast demand are as follows;

Distribution center Demand forecast (3months)
$1 \quad 6,000$
2 4,000
$3 \quad 2,000$
4 1,500
The individual unit transportation rates between the different places cited above are as follows;

Origin

	$\mathbf{1 .}$	$\mathbf{2 .}$	$\mathbf{3 .}$	4
Manzini	E3	E2	E7	E6
Matsapha	7	5	2	3
Malkerns	2	5	4	5

Use the North West Corner method and the Stepping stone method to establish the optimum transportation cost and the number of units that must be shipped from the different plants to the different distribution centers.
[Total 25 Marks]

QUESTION 3.

Study the following activities needed by a company that is developing a new product and then address the project questions

ID	Activity Description Pr	Predecessor	Optimistic	Most probable	Pessimistic
			Time (a)	Time (m)	Time (b)
A	R\& D product design	---	4	5	12
B	Plan Marketing Research	-----	1	1.5	5
C	Routing	A	2	3	4
D	Build proto type model	A	3	4	11
E	Prepare Marketing brochure	- A	2	3	4
F	Cost estimates	C	1.5	2	2.5
G	Preliminary product tests	D	1.5	3	4.5
H	Marketing survey	B, E	2.5	3.5	7.5
I	Pricing \& forecast report	H	1.5	2	2.5
J	Final Report	F, G, I	1	2	3

a. Calculate the expected duration each activity
(10 marks)

b. Draw a network diagram for the 10 activities	(6 marks)
c. Show the different paths in this project network	(4 marks)
d. Which activities fall on the critical path?	$(2$ marks $)$
e. What is the project completion time?	(3 marks)

QUESTION 4.

4.1.Swaziland Furniture Industries manufactures school furniture at three locations at Mustapha, Piggs'Pick and Mbabane. The company distributes the furniture through regional warehouses located in Manzini, Shisweleni and Sabatini. An estimate of the monthly production capacity at each factory and an estimate of items that are needed each month at each of the three warehouses are shown below. Production costs are estimated to be identical at all the three factories but shipping costs from each factory to each warehouse are given and these are assumed to be constant regardless of volumes shipped.

Warehouse Requirements			Factory Capacities	
Manzini	300		Matsapha	
Shisweleni	200	Piggs'Peak	100	
Sabatini	200	Mbabane	300	
			300	

Transportation costs per item

	Manzini	Shisweleni	Sabatini
Matsapha	E5	E4	E3
Piggs'Peak	E8	E4	E3
Mbabane	E9	E7	E5

a. Establish a transportation tableau for SFI using the above information
b. Use VOGEL's approximation method to calculate the optimal transportation cost
(10 marks).
4.2. Dlamini drives from his factory based at Plant 1 to the warehouse every day. Figure on arrows represents distance between the different routes that Dlamini can use. Establish the shortest route that Dlamini must use to travel from plant to warehouse to save fuel.
(10 marks)

Dlamini-from plant to warehouse.

[Total 25 Marks]

END OF EXAMINATION: GOOD LUCK!!!!!

52	06	50	88	53	30	10	47	99	37	66	91	35	32	00	84	57	07
37	63	28	02	74	35	24	03	29	60	74	85	90	73	59	55	17	60
82	57	68	28	05	94	03	11	27	79	90	87	92	41	09	25	36	77
69	02	36	49	71	99	32	10	75	21	95	90	94	38	97	71	72	49
98	94	90	36	06	78	23	67	89	85	29	21	25	73	69	34	85	76
96	52	62	87	49	56	59	23	78	71	72	90	57	01	98	57	31	95
33	69	27	21	11	60	95	89	68	48	17	89	34	09	93	50	44	51
50	33	50	95	13	44	34	62	64	39	55	29	30	64	49	44	30	16
88	32	18	50	62	57	34	56	62	31	15	40	90	34	51	95	26	14
90	30	36	24	69	82	51	74	30	35	36	85	01	55	92	64	09	85
50	48	61	18	85	23	08	54	17	12	80	69	24	84	92	16	49	59
27	88	21	62	69	64	48	31	12	73	02	68	00	16	16	46	13	85
45	14	46	32	13	49	66	62	74	41	86	98	92	98	84	54	33	40
81	02	01	78	82	74	97	37	45	31	94	99	42	49	27	64	89	42
66	83	14	74	27	76	03	33	11	97	59	81	72	00	64	61	13	52
74	05	81	82	93	09	96	33	52	78	13	06	28	30	94	23	37	39
30	34	87	01	74	11	46	82	59	94	25	34	32	23	17	01	58	73
59	55	72	33	62	13	74	68	22	44	42	09	32	46	71	79	45	89
67	09	80	98	99	25	77	50	03	32	36	63	65	75	94	19	95	88
60	77	46	63	71	69	44	22	03	85	14	48	69	13	30	50	33	24
60	08	19	29	36	72	30	27	50	64	85	72	75	29	87	05	75	01
80	45	86	99	02	34	87	08	86	84	49	76	24	08	01	86	29	11
53	84	49	63	26	65	72	84	85	63	26	02	75	26	92	62	40	67
69	84	12	94	51	36	17	02	15	29	16	52	56	43	26	22	08	62
37	77	13	10	02	18	31	19	32	85	31	94	81	43	31	58	33	51

Source: Excerpted from A Million Random Digits with 100,000 Normal Deviates (New York: Free Press, 1955) p. 7, with permission of the Rand Corporation.

