UNIVERSITY OF SWAZILAND

*

14 C

FINAL EXAMINATION PAPER 2017

TITLE OF PAPER :	BUSINESS QUANTITATIVE METHODS
COURSE CODE	BUS611
TIME ALLOWED	THREE (3) HOURS
REQUIREMENTS	CALCULATOR
INSTRUCTIONS	ANSWER ANY FOUR (4) QUESTIONS

.

Question 1

[25 marks, 3+2+4+4+4+4]

(a) A survey was conducted by UNISWA students to find out the monthly consumption of water per household in a city during the recent summer: The data below shows consumption of water from 13 households:

Cubic	metres	per mon	nth:			
342	426	317	545	264	451	1049
631	512	266	492	562	298	

- (i) Compute the mean, median, and mode.
- (ii) Looking at the distribution of the spending, which measures of location do you think are best and/or worst? Why?
- (iii) Compute the standard deviation.
- (b) The manager of a shop (store AB) wants to study characteristics of customers. In particular he decides to focus on two variables: the amount of money spent by customers on clothes and whether the customers have one child, two children or more than two children. The results from a sample of 70 customers are as follows:

Amount of money spent: $\bar{x} = SZL 213.40$, s = SZL 92.2037 customers have only one child 26 customers have two children

- 7 customers have more than two children
- (i) Set up a 95% confidence interval estimate of the population mean amount spent at the shop.
- (ii) Set up a 90% confidence interval estimate of the population proportion of customers who have two children.

If the manager of another shop wants to conduct a similar survey and does not have access to the information generated by the manager from the store **AB**.

- (iii) If he wants to have 95% confidence of estimating the true population mean amount spent in his store to within \pm SZL 15.00 and the standard deviation is assumed to be within SZL 100, what sample size is needed?
- (iv) If he wants to have 90% confidence of estimating the population proportion of customers who have two kids to be within ± 0.045 , what sample size is needed?

Question 2

[25 marks, 2+7+2+6+2+2+2]

(a) The following relates to the number of tourist arrivals in thousands (Y) in Swaziland from the UK and the gross domestic product of Swaziland in SZL billion (X), reflecting the level of economic development over the period 1986 to 2000.

Number of observation = 15 $\sum y = 756$ $\sum x = 108$ $\sum y^2 = 48,522$ $\sum x^2 = 1,020$ $\sum xy = 6,960$

(i) Assuming a linear relationship as follows

$$Y = \beta_0 + \beta_1 X$$

What is the expected sign of β_1 ? Why?

(ii) Use the least-squares method to find the regression coefficients, β_0 and β_1 .

(iii) Interpret the meaning of the slope coefficient.

- (iv) Determine the coefficient of determination, r^2 , and interpret its meaning.
- (v) From (iv), what is the correlation coefficient?
- (vi) Predict the number of tourist arriving in Swaziland when the level of income in Swaziland is SZL 15 billion.
- (b) A nightclub obtains the following data on the age and marital status of 140 customers.

	Marita	al status
	Single	Married
Under 25	77	14
25 or over	28	21

- (i) What is the probability a customer is married and under 25?
- (ii) If a customer is under 25, what is the probability that he or she is single?
- (iii) Is marital status independent of age? Explain your answer.

Question 3

[25 marks, 3+3+3+3+13]

The following payoff table indicates profit (in SZL) for a particular product, which will result from each of three alternative decisions assuming either high or low demand of the product. You may assume there is an 80 % chance of high demand and a 20% chance of low demand.

	High Demand	Low Demand
Decision 1	150,000	-50,000
Decision 2	120,000	20,000
Decision 3	80,000	50,000

Briefly describe what is meant by each of the following decision-making criteria:

(a) The maximax criterion

- (b) The maximin criterion
- (c) The minimax regret criterion
- (d) The expected value criterion

Using each of the criteria above, determine which decision should be chosen. Show your workings and explain your answer in each case.

Question 4

[25 marks, 10+6+9]

A furniture manufacturer produces two types of desks: Standard and Executive. These desks are then sold at SZL3000 for the Standard type and SZL3300 for the Executive type to an office furniture wholesaler; there is an unlimited market for any mix of these desks, atleast within the manufacturers production capacity. Each desk has to go through four basic operations: cutting of the timber, joining of the pieces, pre-finishing and final finish. Each unit of the Standard desk produced takes 48 minutes of cutting time, 2 hours of joining, 40 minutes of pre-finishing and 4 hours of final finishing time. Each unit of the Executive desk required 72 minutes of cutting, 3 hours of joining, 2 hours of prefinishing and 5 hours and 20 minutes of final finishing time. The daily capacity for each operation amounts to 16 hours of cutting, 30 hours of joining, 16 hours of pre-finishing and 64 hours of final finishing time. It costs the furniture manufacturer SZL2600 and SZL2800 to produce one unit of Standard desk and one unit of Executive desk respectively.

- (a) Formulate the linear programming model for this problem.
- (b) Plot a graph indicating and labelling clearly all the constraints, the feasible region and the corner points for the LP problem.
- (c) Determine the product mix that will maximise the total revenue using the corner point method.

Question 5

[25 marks, 4+2+8+2+3+2+2]

(a) It is claimed that the amount donated to charity varies by district. To investigate this you find data from a random sample of individuals in Hhohho and compare this to a random sample of individuals from Manzini. The amounts donated per month (in SZL) are recorded in the following table:

	Hhohho	Manzini
Sample Size	24	21
Mean ,	97.42	201.19
Standard Deviation	115.546	205.645

Let μ_1 represent the population mean monthly donations for Hhohho and μ_2 the population mean monthly donations for Manzini.

- (i) Is there evidence that the mean monthly donations in Manzini is greater than SZL 195? Perform an appropriate test (use the 5% significance level).
- (ii) Combine the two sample standard deviations to obtain a "pooled" sample standard deviation, *Sp.*

- (iii) Does a comparison of the two samples reveal individuals living in Manzini donate more compare to individuals living in the Hhohho region? To answer this conduct a 2-sample t-test (use the 5% significance level).
- (b) A report by Grant Thornton suggests the mean basic salary for bosses of the largest UK companies (FTSE 100 Executives) was 583,291 in 2014. Assume the standard deviation was 451,151. Assume the population is normally distributed.
 - (i) What is the probability that a randomly selected boss has a salary between 1 million and 1.5 million?
 - (ii) Ten percent of bosses have a salary of how much or less?

You obtain a random sample of basic salary for 5 FTSE 100 Executives.

- (iii) Find the standard error of the sample mean salary.
- (iv) What is the probability that the sample mean is greater than 620,000?
- (v) What is the probability that the sample mean differs from the population mean by more than 100,000?

Question 6

[25 marks, 2+4+6+3+2+4+4]

The following table gives details of a garage building project. It lists all activities involved together with any immediately preceding activities and the time in days required to complete each activity.

		Immediately	
		Preceding	
Activity	Description	Acivities	Duration(days)
А	Obtain bricklayer	-	10 .
B	Dig the foundations	-	8
C	Lay the base	В	1
D	Build the walls	A,C	8
E	Build the roof	D	3
F	Tile the roof	E	2
G	Make window frames	-	3
H	Fit the window frames	D,G	1
ł	Fit glass to frames	H	1
J	Fit the door	E	1
K	Paint doors/windows	ل, ا	2
L	Point the brickwork	D	2

(a) By looking at the precedence table can you identify whether or not a dummy activity will be necessary when drawing the network. Explain.

(b) Draw a network for the garage building project.

(c) Calculate the earliest event time and latest event time for each node.

(d) Find the shortest total duration for the project.

- (e) Determine the float for each activity.
- (f) Identify the critical path(s) through the network.
- (g) Briefly describe what is meant by a 'Gantt Chart' and explain its uses in relation to a project such as the one above.

APPENDIX 1: LIST OF STATISTICAL TABLES

TABLE 1

The standard normal distribution (z)

This table gives the area under the standard normal curve between 0 and z i.e. $P[0 \le Z \le z]$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
20.0截	0.0000	0,0040	0.0080	50:01201 .	2010160	\$0,0199	40:0239	0.0279	0103191	0.0359
- 0, P (0.0398	0:0438	×0.0478	0105417/	0,0557	0.0596.0	.0.05 6	0.0675	0101/041-	2.0(0753
0.245	0.0793.94	01083224	0.087.1	00910	0.0948	0.0987	0.0020	-101,110,6145	06103	011141
0.34	0,1179,2	40:1217	011255	0.17.93	0.0566	2011368	. 10, 1410(s).	. 10 M 145 B	011480	0.1517
0.4	011554 2	04159188	20i1628	-04664	0.01700	- 0007515	(0) (P////	10111810[8].	0,1824	0418795
÷015	0.19153	0/1950	0.1985	0120109	-012054	0.2088	-0.2424	:(<u>19</u> /15/	- USA EU	072224
		MARKED			5 i i i i	Ser.	in an		1.000	
20:641	012257	20/229138	0.232468	01235/55	201238939 295:3955	0,248.04	- Urz454 S	-Un4-100	UNDER .	BUPZ04954
106/2%	0.2580#1	10.2611834	0.2042.ks	0.2075	H012//05	21012//645- 1012/1014	0122/042	0,	- U240220	
10.82	0.200 - 5	(AU:29.10元) 第月目1日とは1	20129590 X 2714	012907.1		AND		EUDUIO -	Listende	10(9) 92, 41 Sinia 30n
10096	10.5159.2	2013-160米年 長月時代4月1日		060250	RUND 204164			300509400 3.5599400	Un Doub-	- UI92094
11.0發	0.54 0.56	CU10408324	0.6400	୍ୱାପ୍ୟୁର୍ବ	Ulogvos -	SUSCERS.	- 90-100- -	N CODA	USPER.	UDUZ S-
	0 16416	0.366534	d title at	. Sel styletst	01.1/4.19)	101 176-191	(6) (7)	ler spletet.	ie: 1:616)	013830
對台灣	0.3849	0.3869	0.311118	01.1905/	019925	01-39242	0.5060	- (0);5(9);6(0)	01-12107	04015
一個素	6.4032	0.4648	0.4066	02082	10.2003	lefenetes:	.10172 Al 301	014224	0145162	0141777
1/2	0.4192-3	0.42074	0.4797	02236	20/225 28	014265	(0)(0:4292	0,48061	013 19
11.5	0.4332	1.014345	0(4357	10,2137/01	04582	101215154	NELOG	0142408	04.29	C 444 ()
	19.74					e an		er i stationer.	an a	
1.6	0.4452	0.4463	50:4474/e	0.4484	014495	04505	明朝时,	-0/45256	04565	0145450
利用	0.4554	0.45642	0,4573	0/4582	204591	10141599	10141008	04606	=0/4625	- 014633
1.8	0.4641#4	0,46491	20,4656	0.4664	0146714	201467/8	014686	. 0:46980.,	0/4699	0.4706
1:9	0.47.13	201471910	0.472632	a0i4732ia	014738	-014746	0147/50	0:4756	0147/64	00476764
2.0	0.47,72.45	014778	0.4783	.0:4788	00.4793 S	1014/98	004803	0.4808	0,48,12,	0101481974
1.4	A 403140	- 15 P.C.	10.10	1. 16 P. 16		and the		Wate 19 Jan	division in	的情報
於海臺	6 286	C 1862	n Jacov		12875	E MARKE	NAME	In Although	012887	0.2890
1.5 12	0.48928	6 Jadda	RUGGET	av blanter-	0149016	Shindonral	an ago Ref	in the first	n zotsz.	A ditine
334	0 491805	n 497n7	Sn 49774	10/29229	m267869	101210121865	0 20305	n do da	0.493438	0149361
9.2	h 49376	n29396	0.292	0.49436	Ph/46446	68494151	0.494775	01/40/10/02	0.49506	6149620
1000			Sieda			Side Office				
2.6 2	0.49534	0149547	0.49560	0:49573	0.49585	01495988	0149609	0;496212	0/49632	0149643
. 2.7	0.49653	0.49664	0.496743	0.49683	0.496936	0.49702	07497.11	0.49720	80:497/28	0/49736
2.8.2	0.49744		0:49760);	0.49767	0.49774	20:49781	0.49788	30,497,95	0/498015	0149807
2.9.5	0,49813	0/49819	20:49825	0.49831	VDI498368	2,0149841	01498469	90:49851	10/419856	30(4986) #
3,0登	0.49865#	0.49869	30,49874	0149878	0,498823	40,49886	-049339	10149893	10749897	0.49900
	0.400028	AUTOAL		- - - -		And tofothel	ter totabili	in loopy	- Interference	HN/66565
	10.49903 B	A 488 54 5	11,45856	AM0658	6 1667 14		A NORTH	CHARLES	ANNOD AND	
10:2%	0.49991.4	2001422042 2 n anne 22	ANIGATE	204999900 81171001-34	A ABACAS	a Month		20140062	A Non-A	NOFA66267
	0.40992	01433333	101433001 1014666	20170070 20170070	67/10071	1766739	18015	1/106 741	A Jad 7	100963
12014 15	10:49900	5.01499003 5.5.1663676	CEV1499091		-014 <i>391</i> 16	EU HOJU ZA	0140515	5 0:4557.40 5 0:4557.60		a hunnadar
- 3:05	0.499.77	12.014997.0rs	0.499769	101199795	0,45500	01-0-000	UNDER T	ULHOUOZ.		2014220035F
	0.49984	0.299840	0.499858	0.29986	0,49986	10/4998/2	6149987	0/49988	0149988	0149989
1375	0.49989	6,49990	0/49990	0,49990	6 29951	0149991	0149991	60,49992	0 49992	0,499923
838 <u>8</u>	0.499932	6.49993	0,499932	0.49994	0 499944	0.49994	201499994	0.49995	601499995	0,49995
3.9	0.49995	0:49995	0.49996	0149996	0.49996	0149996	0,49996	0/49996	0.499975	a6/49997*
4:0	0.49997	0.49997	0.49997	ko.49997A	0.49997	10.49997	0149998	0,45998	20.49998	¥0 49998≁

TABLE 2

The t distribution

This table gives the value of $t_{(n(\alpha))}$ where *n* is the degrees of freedom i.e. $\mathbf{E} = \mathbf{P}[t \ge t_{(n(\alpha))}]$ 0.010 0.005 0.0025

4

TABLE 4 (a)

F distribution ($\alpha = 0.05$)

The entries in this table are critical values of F for which the area under the curve to the right is equal to 0.05.

				Degi	ees of fre	edom fo	r numerat	or	· · ·		
	$q_{\rm e}^{\rm T} = 0$	Ū,	122		4	5.5	are les	1967	8 8 6 4	3 9 20	10
	1. Al 🖓	(je lat	19965	之时,	240	23072	234	23618	238.9	220,523	241.9
	2	1815.	- 19,0	- (E) <u>(</u> 2)	1972	a)930.	相關的影響	1942	19.4	n 19 4	19.4
	5	(100) - E	98 <u>5</u> ,	9728	947	159.01	8.94	÷8.89	1,8185,0	8.81	8.79
	19 A. S.		a OBL	15;(2)	or ter	626	- 16, B	6:09	5-6.04	6.00	5,96
	- 5	6.6.1	- si/()	50A	「細胞」。	105	495.4	4884	4.825	4.775	4,74
		$\sim 10^{-1}$									
	Ø.,	1	.月前4日	476	(<u>fi</u> st _e	4,39%	4:28	4121	14.15	4 10,	4,06
		5759	474		410	2,3197	L (3187.C.S	379-1	193,735	3,68	3.64
	- Ð	-ick-	146	12405	384	7 - Sil69 - P	2,3458	3350.64	23,44	3:39	3.35
	> 0	- diplo	ig 40	31 36 1 -	, slittler,	ek 2048 _n .	29914	329	ভাঠান	3 8	3.14
-	- 'W	24 2 40	4010	(J Ø)	36B., s	338	-3.22	1.114 <u>8</u> -	- 3107	9:02-5	2,12,98
ato									in de la		
min	18	(5,56		SIG	- 120 1	103109778	5(01	2195	1,72,90	2.85
DU	12	- 49451	199	siel9	346	SUR	3:00	- 291	2,851	242(80)	2.75
r de	્યદ્ય -	4157	3181	a alan	3618	- <u>iok</u> i	<i>in 12</i> ,97, 15	, 2085	2,11	217 E.	2.67
n fo	5 1 035	4460	- 1 <i>7</i> 6	334	્યુનામ	419(6)	2,85	21/61	-2i/0	592-65 191	2.60
-pp	U.		3168	3129	300	7 <u>9</u> 0	00247972	- 204	6.92i64.9	2012(59)5) Anna 144	2°°•2.54
ree			a na sana sa	S. Burn		-					
of	- 40	414.9	STOP	A.44	SION .	2.60	and a second	2100 E	SE215945 SE215282	582.541 2.2.1412 -	2,49
ees			999	5149	230		fier in	- <u>20</u> 1-2	21528) 127521	16,214.9	(約12:40) (約13:23)
46a	10		1, 1,00-1 1, 1,00-1	e 2610		Ç.,		202120.00 2015 12	h_{0}	5 2 4 0 E	10,52,91 10,53 10,53
0		- 190 -		2 (B).	(41,43) ((11,64)		2102-95 101-102-95				1.30
	202	, tupij	12K)	AND CARE	ator	2021/11/12 12/15 - 12	672100×55	4410 Astronomic - 1			2:33
	50 F		- 27-1						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1917 - 1	8131 161 3 3 51
				a circulate	yin bi				5205	4.5 14	2.72
			3. A.S.	र स ्त ि				T DAA 1	1333	5 45	2.50
		10 A 10 A			7671			- 9 AD 4	5.7.76.54	i di ji an	2.25
	215			নাওটা। নাওটা।	111	17.60	129.46	a5.48.2	1	2.78	2.24
					5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			ied in a		Syste.	
		217	1,69	Niebe	2159	21510	e fai de	19585 A	2271	5212(s.)	2.16
	40	408	1.27	2.84	24 3 1	2345	1994.	國防加	2180	我 拍	2.08
	60	4 004		5-5-15	$T_{\rm s} = 0$	5397	1913 C	的病	2.10.8	12.04	1,99
	120	63.672	5.67	2.68	7245	15.99	12/15	5.09 V.s.	202	1.96	1.91
			180	21610		6531	5-210-1	2012	01:94	1.88	1.83

TABLE 4 (a) continued

F distribution ($\alpha = 0.05$)

				Degree	s of freed	om for nu	merator			V.
B .A			- 49	-20	$\sim 10^{-1}$	-sto	e lu	(60)	u W	
	- 1) - 1)	. Leisi	2100	<u>a</u> la 🍾	. <u>1</u> 601 .*	动心	254.1	- ishibi -	ADDIE	29 Bee
1000	- <u>2</u> .,	in det a	. (19 2)	.j e jµi	1510	. 10 5	ંગવડ	他的一	- HERE	- Militian
1.100	- 3 -1	8/4	a shirt	- 19100	istort.	a tilline	1:1561	18 3 1	600	isie B-2
	$\sim 10^{-1}$	(1 <u>519</u> 1)	. spills	SILL .	5.00	5.76	1112	5,699	ોંધ	(163) -
Net Providence	<u>्राष्ट्र</u> (Site	e: 4 162 5	4615	也却。		41468	1. 创始)	en selfete)	n ng bina
2018				ing ji t						
1000	6.4	FR94100 V.	Siku! ⊭n	3.89	5 S 184	6166	- Sulti	374-5	3(7,0)	310/
10100	1	107	તું હોઇથી ન	, i siau	副期目	્યુકોઈ	934	s. ⊴igloite	3 juli	- 978be
and a	998.8	//#i-3i28.c		્ર ગુપાઇ	5. U.S.		100	Steal /		2198
1000	1999 B	19330/21 1997	3101	22 Als	- ASO	3:6	265		ader	201
H	210.5	21,21912	285	28/0	- 1990 _{- 1}	12.40		2,02	3858	250
nato		e de la compañía de l		and.	Strahl	Shini	ejirsi	Тор		i.m.
L L L		44	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-4@D	A STATES	ALCH Anglet	- (CD) - (CD)	Species of		
len		i - Aµ05) √ hifelata	- ders - Hel	540FI 51.16	APR -	(AB4) (1914)	1. 2. KNU 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1 2429 SIND	
5			en e	- 74,4419 		1999 1998	actor Stratef	april 1	-1310	
E		an are Arta		Sicht	CARL .	in China and Anna anna anna anna anna anna ann	in star	1445 1445	i gules Sign	
edo	$\gamma_{i}^{\mu\nu}$	a shake a	C. C.R.C.	ALCOP.	4 <u>4454</u> 1	4. <u>19</u> .4.1	3000	1.00		
r tre	16		- J.	1.13	at kel	11 163	文化学	Тапі	106	No.
0 52	17	2012/08/	24531	G.63 -	·· Zaki	245	2.10	Chil5	ZICH	1.96
Jree	.	2.34	24.22	shiet /	2.65	2 23 M	Zielo	2012	12	192
)ea	19	- 11 P	te state	246	230	C. Wall	2/05/	1198	103	88
and the set	20	2,28	1.10	21102		22101		1 1 25	iii.0	- 184
Chort AL					N. SAL					
1	12140	10 2.15	-1.418	2.10	3405	2101	1,510	i stip	- 1187	
11	S21-5	2236	(a. 2015). 2015	5Å97/	2003	i sjeja	16 4 5	1895	and the des	1 .1878
and the second second	N 23 M	2.20	的过程中	Sezi0586	-2101	-4 4196	il ait	186	l Bl	176
10.00			~ 201	21034	22 (1989) 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	1,94	(89)	- 1184 V	1.79	建 运行32%
-01-01-0-	25.0	2.16	2109	2,00	196	્ર હાંછાટ	180	0.82-	1.67	
2000										A
The second	到30次	1872.09 19	2101	sal 936 j	1189	s - (1841)	12,01,792	at 1174 -	1168	1162
10000	a 46. is	2,000	2311921¥c	1184	179		169	244 Hi64 🖓	121-1898	的時代
	2960x	AC1.92	1184	914-1475	s (170)			- N68.4	457-1147-F	1199 F
	\$2120 N	451183 ·	*******	34 166.		se tab	1110	an friti	Sacin359	1 255
	1 00 L	PET 195	於其前是	ANT 57	021102	长台146日	1136 E	132		in Hoo

APPENDIX 2: LIST OF KEY FORMULAE

MEASURES OF CENTRAL LOCATION

Arithmetic mean Ungrouped data

 $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$ Grouped data

 $\overline{x} = \frac{\sum_{i=1}^{m} f_i x_i}{n}$

- **Mode** Grouped data $M_{o} = O_{mo} + \frac{c(f_{m} - f_{m-1})}{2f_{m} - f_{m-1} - f_{m+1}}$
- **Median** Grouped data $d_{\pi}^{n} = f(<$
 - $\mathbf{M}_{e} = \mathbf{O}_{ne} + \frac{c\left[\frac{n}{2} f(<)\right]}{f_{ne}}$
- **Lower quartile** Grouped data $Q_1 = O_{q1} + \frac{c(\frac{n}{4} - f(<))}{f_{q1}}$
- Upper quartile Grouped data $Q_{3} = O_{q3} + \frac{c(\frac{3n}{4} - f(<))}{f_{q3}}$ Geometric mean Ungrouped data
 - $GM = \sqrt[n]{x_1 \times x_2 \times x_1 \times \dots \times x_n}$ 3.4

` 3.1

3.3

3.2

3.7

3.8

Weighted
arithmetic meanGrouped dataweighted $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$ 3.5

MEASURES OF DI	SPERSION AND SKEWNESS		Multiplication rule	Statistically dependent events $P(A \cap B) = P(A/B) \times P(B)$	4.5
Range	Range = Maximum value – Minimum value + 1 = $x_{max} - x_{min} + 1$	3.9		Statistically independent events $P(A \cap B) = P(A) \times P(B)$	4.6
Variance	Mathematical – unarouped data		n! = n factorial	$n \times (n-1) \times (n-2) \times (n-3) \times \times 3 \times 2 \times 1$	4.8
	$s^{2} = \frac{\Sigma(x_{i} - \bar{x})^{2}}{(n-1)}$	3.10	Permutations	${}_{n}\mathrm{P}_{r} = \frac{n!}{(n-r)!}$	4.10
	Computational – ungrouped data		Combinations	${}_{n}C_{r} = \frac{n!}{r! (n-r)!}$	4.11
	$s^{2} = \frac{\sum x_{i}^{2} - n\bar{x}^{2}}{(n-1)}$	3.11	PROBABILITY DIST	RIBUTIONS	
Standard deviation	$s = \sqrt{s^2}$	3.12	Binomial	$P(x) = {}_{n}C_{x}p^{x}(1-p)^{(n-x)}$ for $x = 0, 1, 2, 3,, n$	5.1
Coefficient of variation	$CV = \frac{s}{x} \times 100\%$	3.13	uistation	$P(x \text{ successes}) = \frac{n!}{x! (n-x)!} p^{x} (1-p)^{(n-x)} \text{ for } x = 0, 1, 2$, 3,, <i>n</i>
Pearson's coefficient of	$sk_{p} = \frac{n\Sigma(x_{i} - \bar{x})^{3}}{(n - 1)(n - 2)s^{3}}$	3.14	Binomial descriptive measures	Mean $\mu = np$ Standard deviation $\sigma = \sqrt{np(1-p)}$	5.2
skewness	$sk_{p} = \frac{3 (Mean - Median)}{Standard deviation}$ (approximation)	iuimum value + 1 3.9 $r! = n$ factorial $n \times (n - 1) \times (n - 2) \times (n - 3) \times \times 3$ 3.10 Permutations $_{n}P_{r} = \frac{n!}{(n - r)!}$ 3.11 PROBABILITY DISTRIBUTIONS 3.12 Binomial $P(x) = _{n}C_{x}p^{x}(1 - p)^{(n-1)}$ for $x = 0, 1$ 3.13 $P(x) = \frac{n!}{x!(n - s)!}p^{s}(1 - p)^{(n-s)}$ for $x = 0, 1$ 3.14 Generative measures 1.14 $P(x) = \frac{e^{-\alpha x}}{x!}$ for $x = 0, 1, 2, 3$ (approximation) 3.15 Poisson $P(x) = \frac{e^{-\alpha x}}{x!}$ for $x = 0, 1, 2, 3$ 4.2 $Poisson Mean \mu = np e^{-\alpha x}$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 $Poisson Mean \mu = a$ for x = 0, 1, 2, 3 Poisson here for x = 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	$P(x) = \frac{e^{-x}a^{x}}{x!}$ for $x = 0, 1, 2, 3$	5.3	
PROBABILITY CON	CEPTS				
Conditional probability	$P(A/B) = \frac{P(A \cap B)}{P(B)}$	4.2	Poisson descriptive measures	Mean $\mu = a$ Standard deviation $\sigma = \sqrt{a}$	5.4
L			Standard normal	$z = \frac{x - \mu}{\sigma}$	5.6
Addition rule	Non-mutually exclusive events $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	4.3	μιοραομικά		
	Mutually exclusive events $P(A \cup B) = P(A) + P(B)$	4.4			

٠

. .

*.**

•

Ś

CONFIDENCE INTERVALSPaired Letss:
$$t \text{ stat} = \frac{\overline{n}_{r} - \mu_{1}}{\overline{d}}$$
9.5Single meanin farge; variance known \overline{n} for $r + \frac{\pi}{d}$ 7.1where $\mu_{1} = (\mu_{1} - \mu_{2})$ where $\mu_{2} = (\mu_{1} - \mu_{2})$ $\overline{N} = \sqrt{n} \leq \overline{n} < \overline{n}$

10

· ·