UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER 2017

TITLE OF PAPER : BUSINESS QUANTITATIVE METHODS COURSE CODE : BUS611

TIME ALLOWED : THREE (3) HOURS
REQUIREMENTS : CALCULATOR INSTRUCTIONS : ANSWER ANY FOUR (4) QUESTIONS

Question 1

(a) A survey was conducted by UNISWA students to find out the monthly consumption of water per household in a city during the recent summer: The data below shows consumption of water from 13 households:

Cubic metres per month:

342	426	317	545	264	451	1049

$\begin{array}{llllll}631 & 512 & 266 & 492 & 562 & 298\end{array}$
(i) Compute the mean, median, and mode.
(ii) Looking at the distribution of the spending, which measures of location do you think are best and/or worst? Why?
(iii) Compute the standard deviation.
(b) The manager of a shop (store AB) wants to study characteristics of customers. In particular he decides to focus on two variables: the amount of money spent by customers on clothes and whether the customers have one child, two children or more than two children. The results from a sample of 70 customers are as follows:

Amount of money spent: $\bar{x}=S Z L 213.40, s=S Z L 92.20$
37 customers have only one child
26 customers have two children
7 customers have more than two children
(i) Set up a 95% confidence interval estimate of the population mean amount spent at the shop.
(ii) Set up a 90% confidence interval estimate of the population proportion of customers who have two children.

If the manager of another shop wants to conduct a similar survey and does not have access to the information generated by the manager from the store $A B$.
(iii) If he wants to have 95\% confidence of estimating the true population mean amount spent in his store to within \pm SZL 15.00 and the standard deviation is assumed to be within SZL 100 , what sample size is needed?
(iv) If he wants to have 90% confidence of estimating the population proportion of customers who have two kids to be within ± 0.045, what sample size is needed?

Question 2

[25 marks, $2+7+2+6+2+2+2+2]$
(a) The following relates to the number of tourist arrivals in thousands (Y) in Swaziland from the UK and the gross domestic product of Swaziland in SZL billion (X), reflecting the level of economic development over the period 1986 to 2000.

$$
\begin{aligned}
& \text { Number of observation }=15 \\
& \sum y=756 \\
& \sum x=108 \\
& \sum y^{2}=48,522 \\
& \sum x^{2}=1,020 \\
& \sum x y=6,960
\end{aligned}
$$

(i) Assuming a linear relationship as follows

$$
Y=\beta_{0}+\beta_{1} X
$$

What is the expected sign of β_{1} ? Why?
(ii) Use the least-squares method to find the regression coefficients, β_{0} and β_{1}.
(iii) Interpret the meaning of the slope coefficient.
(iv) Determine the coefficient of determination, r^{2}, and interpret its meaning.
(v) From (iv), what is the correlation coefficient?
(vi) Predict the number of tourist arriving in Swaziland when the level of income in Swaziland is SZL. 15 billion.
(b) A nightclub obtains the following data on the age and marital status of 140 customers.

	Marital status	
	Single	Married
Under 25	77	14
25 or over	28	21

(i) What is the probability a customer is married and under 25 ?
(ii) If a customer is under 25 , what is the probability that he or she is single?
(iii) Is marital status independent of age? Explain your answer.

Question 3

[25 marks, $3+3+3+3+13$]

The following payoff table indicates profit (in SZL) for a particular product, which will result from each of three alternative decisions assuming either high or low demand of the product. You may assume there is an 80% chance of high demand and a 20% chance of low demand.

	High Demand	Low Demand
Decision 1	150,000	$-50,000$
Decision 2	120,000	20,000
Decision 3	80,000	50,000

Briefly describe what is meant by each of the following decision-making criteria:
(a) The maximax criterion
(b) The maximin criterion
(c) The minimax regret criterion
(d) The expected value criterion

Using each of the criteria above, determine which decision should be chosen. Show your workings and explain your answer in each case.

Question 4

[25 marks, $10+6+9$]
A furniture manufacturer produces two types of desks: Standard and Executive. These desks are then sold at SZL3000 for the Standard type and SZL3300 for the Executive type to an office furniture wholesaler; there is an unlimited market for any mix of these desks, atleast within the manufacturers production capacity. Each desk has to go through four basic operations: cutting of the timber, joining of the pieces, pre-finishing and final finish. Each unit of the Standard desk produced takes 48 minutes of cutting time, 2 hours of joining, 40 minutes of pre-finishing and 4 hours of final finishing time. Each unit of the Executive desk required 72 minutes of cutting, 3 hours of joining, 2 hours of prefinishing and 5 hours and 20 minutes of final finishing time. The daily capacity for each operation amounts to 16 hours of cutting, 30 hours of joining, 16 hours of pre-finishing and 64 hours of final finishing time. It costs the furniture manufacturer SZL2500 and SZL2800 to produce one unit of Standard desk and one unit of Executive desk respectively.
(a) Formulate the linear programming model for this problem.
(b) Plot a graph indicating and labelling clearly all the constraints, the feasible region and the comer points for the LP problem.
(c) Determine the product mix that will maximise the total revenue using the corner point method.

Question 5

[25 marks, $4+2+8+2+3+2+2]$

(a) It is claimed that the amount donated to charity varies by district. To investigate this you find data from a random sample of individuals in Hhohho and compare this to a random sample of individuals from Manzini. The amounts donated per month (in SZL) are recorded in the following table:

	Hhohho	Manzini
Sample Size	24	21
Mean	97.42	201.19
Standard Deviation	115.546	205.645

Let μ_{1} represent the population mean monthly donations for Hhohho and μ_{2} the population mean monthly donations for Manzini.
(i) Is there evidence that the mean monthly donations in Manzini is greater than SZL 195? Perform an appropriate test (use the 5% significance level).
(ii) Combine the two sample standard deviations to obtain a "pooled" sample standard deviation, Sp.
(iii) Does a comparison of the two samples reveal individuals living in Manzini donate more compare to individuals living in the Hhohho region? To answer this conduct a 2 -sample t-test (use the 5% significance level).
(b) A report by Grant Thornton suggests the mean basic salary for bosses of the largest UK companies (FTSE 100 Executives) was 583,291 in 2014. Assume the standard deviation was 451,151. Assume the population is normally distributed.
(i) What is the probability that a randomly selected boss has a salary between 1 million and 1.5 million?
(ii) Ten percent of bosses have a salary of how much or less?

You obtain a random sample of basic salary for 5 FTSE 100 Executives.
(iii) Find the standard error of the sample mean salary.
(iv) What is the probability that the sample mean is greater than 620,000 ?
(v) What is the probability that the sample mean differs from the population mean by more than 100,000 ?

Question 6

[25 marks, $2+4+6+3+2+4+4]$
The following table gives details of a garage building project. It lists all activities involved together with any immediately preceding activities and the time in days required to complete each activity.

| | Immediately
 Preceding
 Acivities | | |
| :--- | :--- | :---: | :---: | Duration(days)

(a) By looking at the precedence table can you identify whether or not a dummy activity will be necessary when drawing the network. Explain.
(b) Draw a network for the garage building project.
(c) Calculate the earliest event time and latest event time for each node.
(d) Find the shortest total duration for the project.
(e) Determine the float for each activity.
(f) Identify the critical path(s) through the network.
(g) Briefly describe what is meant by a 'Gantt Chart' and explain its uses in relation to a project such as the one above.

APPENDIX 1: LIST OF STATISTICAL TABLES

TABLE 1
The standard normal distribution (z) This table gives the area under the standard normal curve between 0 and 2 i.e. $\mathrm{P}[0<\mathrm{Z}<\mathrm{z}]$

TABLE 2
The t distribution
This table gives the value of $t_{\text {(1, }}(0)$
where n is the degrees of freedom

TABLE 3
The Chi-Squared distribution (χ^{2})
This table gives the value of $\chi_{\text {idna }}^{2}$ where dfis the degrees of frecdom

TABLE 4 (a)
F distribution ($\alpha=0.05$)
The entries in this table are critical values of E for which the area under the curve to the right is equal to 0.05 .

TABLE 4 (a) continued
F distribution $(~ a=0.05)$
APPENDIX 2: LIST OF KEY FORMULAE

MEASURES OF CENTRAL LOCATION
Arithmetic mean Ungrouped daia

$$
\bar{x}=\frac{\sum_{n=1}^{n} x_{1}}{n}
$$

Grouped data
$\bar{x}=\frac{\sum_{i=1}^{n} f_{1}}{n}$

Mode Grouped data
$M_{0}=O_{m o}+\frac{c\left(f_{m}-f_{m-9}\right)}{2 f_{m}-f_{m-3}-f_{m+1}}$

Median Grouped data
$M_{c}=O_{n, r}+\frac{\left.q \frac{n}{2}-f(c) \right\rvert\,}{f_{s u c}}$

Lower quartile Grouper date

$$
Q_{1}=O_{q 1}+\frac{q\left(\frac{11}{4}-f(x)\right)}{f_{41}}
$$

Opper quartile Gromped data
$Q_{3}=O_{43}+\frac{\left(\frac{3 n}{4}-n<1\right)}{f_{41}}$

Geometric mean

Ungrouped data

$$
\mathrm{GM}=\sqrt[n]{x_{1} \times x_{2} \times x_{3} \times \ldots \times x_{n}}
$$

Weighted nithmetic mean

Grouped dato
weighted $\bar{x}=\frac{\sum f x}{E f}$

MEASURES OF DISPERSION AND SKEWNESS

Range Range $=$ Maximum value - Minimum value +1

$$
=x_{\max }-x_{\min }+1
$$

Vaxiance Mathematical-ungrouped datn

$$
s^{2}=\frac{\sum(x,-x)^{\prime}}{(n-1)}
$$

Compitational - umgrouped data

$$
s^{2}=\frac{\sum x_{i}^{2}-n \bar{x}^{2}}{(n-1)}
$$3.11

Standard $s=\sqrt{s^{2}}$ 3.12

Cocflicient of $\mathrm{CV}=\frac{5}{\bar{x}} \times 100 \%$
variation

Pearson's $\quad s k_{f}=\frac{n 2\left(x_{i}-\bar{x}\right)^{\prime}}{(n-1)(n-2) s^{\prime}}$
coefficient of
skewness

$$
s k_{v}=\frac{3(\text { Mcan }- \text { Median })}{\text { Slandard deviation }}
$$

PROBABHLITY CONCEPTS

$$
\begin{gathered}
\text { Conditional } \\
\text { probability }
\end{gathered} \quad P(A / B)=\frac{P(A \cap B)}{P(B)}
$$

Addition rule Non-mutually exclusive events

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Mutually exrlusive events

$$
\mathrm{P}(\Lambda \cup B)=\mathrm{P}(\Lambda)+\mathrm{P}(B)
$$

CONFIDENCE INTERVALS

Single mean a large; variance known

$$
\bar{x}-z \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+z \frac{\sigma}{\sqrt{n}}
$$

(lower limit) (upper limit)
n small; variance unknown
$\bar{x}-t_{(n-1)} \frac{8}{\sqrt{n}} \leq 1 n \leq \bar{x}+t_{(m-1)} \frac{s}{\sqrt{n}}$
(lower linit) (upper limit)

Single proportion $p-z \sqrt{\frac{(1-p)}{n}} \leq \pi \leq p+z \sqrt{\frac{p(1-p)}{n}}$
(lower limil) (upper limit)

HYPOTHESES TESTS

Single mean

Variance known

Paired \boldsymbol{t}-test $\quad t$-stat $=\frac{\bar{x}_{x_{2}}-\mu_{x_{i}}}{\frac{s_{1}}{\sqrt{1 / 2}}}$
where $\mu_{d}=\left(\mu_{1}-\mu_{2}\right)$
and $s_{d}=\sqrt{\frac{\sqrt{\left(x_{1}-\bar{x}_{d}\right)^{2}}}{n-1}}$

Chi-Squared $\quad x^{2}-$ stat $=\Sigma \frac{\left(0_{0}-f_{y}\right)}{f_{e}}$

Overall mean $\quad x=\frac{\sum \sum x}{N}$

Total sum of

$$
\text { squares (SSTotal) }=\sum_{i} \sum_{i}\left(x_{i j}-\bar{x}\right)^{2}
$$

$\operatorname{SST}=\sum_{i}^{k} n_{i}(\bar{x}-)^{2}$
$\mathrm{SSE}=\sum_{i} \sum_{i}\left(x_{i i}-\bar{x}_{i}\right)^{2}$

SSTotal $=\operatorname{SST}+\operatorname{SSE}$

MSTotal $=\frac{\text { SSTual }}{N-1}$

MST $=\frac{\text { SST }}{k-1}$

MSE $=\frac{\text { SSE }}{N-k}$
11.10

