UNIVERSITY OF SWAZILAND

FACULTY OF EDUCATION

UNIVERSITY OF SWAZILAND

DEPARTMENT OF EDUCATIONAL FOUNDATIONS AND MANAGEMENT

FOR

FACULTY OF EDUCATION AND THE INSTITUTE OF DISTANCE EDUCATION FULL TIME AND PART TIME PROGRAMMES

MAY, 2016 FINAL EXAMINATION PAPER

BACHELOR OF EDUCATION 111 (B.Ed.) Full-Time BACHELOR OF EDUCATION 111 (B.Ed.) Part-Time POSTGRADUATE CERTIFICATE IN EDUCATION (PGCE) Part-Time

COURSE CODE :	EDF 322
---------------	---------

- TITLE OF PAPER : EDUCATIONAL RESEARCH
- TIME ALLOWED : THREE HOURS
- INSTRUCTIONS : 1. THIS PAPER IS DIVIDED INTO **TWO SECTIONS (A** AND **B)**. ANSWER **ANY TWO** QUESTIONS FROM EACH SECTION 2. UTILISE THE ATTACHED STATISTICAL FORMULAS AND TABLES WHERE NECESSARY.

TOTAL MARKS : 100

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE INVIGILATOR.

1

SECTION A

- 1. Discuss any five key ethical considerations when conducting an educational research Total: 25 marks
- 2. Examine any four random sampling methods showing how they can be used in educational research. Total: 25 marks
- 3. Explain the following research components and show how they are related:

(a) Statement of the problem	(6 marks)
(b) Research questions	(6 marks)
(c) Research hypotheses	(6 marks)
(d) Research design	(7 marks)
	[Total: 25 marks]

SECTION B

 Table 1 below is a data set of marks obtained by 10 O'Level pupils in Maths and Physics In-Class tests.
 Table 1

I ADIC I										
Student	A	В	C	D	E	F	G	H	I	J
Mathematics (X)	62	71	72	62	74	83	54	78	67	57
Physics (Y)	63	61	51	62	58	48	75	57	60	75

(a) Calculate the median of the Mathematics marks	(1 mark)
(b) Locate the mode of Physics marks	(1 mark)
(c) Calculate the mean of the Mathematics marks	(1 mark)
(d) Compute the mean of the physics marks	(1 mark)

2

- (e) Find the standard deviation of the Physics marks (4 marks)
- (f) Suppose the standard deviation of the Mathematics is 9.29, determine the subject in which student D did better
 (2 marks).
- (g) Give any two advantages and two disadvantages of using the mean to explain students' performance
 (4 marks).
- (h) From the data given in Table 1 above compute Spearman rank order correlation coefficient and comment on it (5 marks).

Table 2 below is a data set of marks obtained by 10 O'level pupils in Maths and Physics tests.

Table 2

PUPIL	A	В	C	D	E	F	G	H	I	J
MATHS	80	60	72	47	62	75	64	58	72	70
PHYSICS	78	61	70	52	60	75	65	60	70	70

(i). Using data from Table 2 above, carry out a t-test at 1% significance level to determine if there is a difference between the students' performance in Maths and in Physics (6 marks).

[Total: 25 marks]

5. Table 3 below is a data set of marks obtained by 10 PGCE students in Educational Psychology and Sociology of Education In-Class tests.

Table 3										
Student	A	В	C	D	· E	F	G	Η	I	J
Educational Psychology (X)	62	71	72	62	74	83	54	78	67	57
Sociology of Education (Y)	63	61	51	62	58	48	75	57	60	75

5.a. Calculate the median of the Educational Psychology marks	(3 marks)
5.b. Locate the mode of Sociology of Education marks	(3 marks)
5.c. Calculate the mean of the Educational Psychology marks	(3 marks)
5.d. Compute the mean of the Sociology of Education marks	(3 marks)
5.e. Find the standard deviation of the Sociology of Education marks	(8 marks)
5.f. Suppose the standard deviation of the Educational Psychology is 9.29	, determine the subject
in which student D did better	(5 marks)
	[Total 25 marks]

6. (a). Define the following terms as they are used in research:

i.	Mean	(1 mark)
ii.	Mode	(1 mark)
iii.	median	(1 mark)

b). The following is a list of test marks for the final year students studying Education at the University of Swaziland in their statistics course. The highest possible mark for the test is 10.
10 3 4 9 9 3 1 0 5 6 5 5 3 7 9 8 7
Find the

i.mode of the marks obtained(1 mark)ii.the range of the marks obtained(1 mark)iii.the mean of the marks obtained(1 mark)

c). Find the inter-quartile range using the following procedure

i.	First calculate the lower quartile using $(n+1)/4$	(1 mark)
ii.	Second, calculate the upper quartile using $3 \times (n+1)/4$	(1 mark)

iii. Finally calculate the inter-quartile range (1 mark)Note that n is the number of students and that the above formulas give us the positions of the quartiles not the values of the quartiles

i. **Table 4** below shows the number of Grade 10 pupils taking each of the five subjects Geography, Afrikaans, English and Science

d).

e.

Table 4 showing the number of Grade 10 pupils taking each of the five subjects geography,

 Afrikaans, English and Science.

SUBJECT	FREQUENCY
Geography	10
Afrikaans	15
English	25
Science	15

Copy and complete the following frequency table using the data given in Table 4

Subject	Frequency	Percentage	Cumulative percentage
Geography	10		
Afrikaans	15		
English	25		
Science	15		*
			/A 1 \

(4 marks)

ii. Represent the information in the table that you completed in a pie	e chart using the
columns "subject" and "percentage"	(4 marks)
Suppose we have 8 students in a class and the grades of their assignment	ment are as follows
72 6 93 51 77 43 88 and 96	

i). What is the mean mark in this class?	(2 marks)
ii). What is the median mark?	(2 marks)
iii). What is the variance and the standard deviation of these marks?	(3 marks)
iv). What does the value of the standard deviation that you obtained mean?	(1 marks)

[Total 25 marks]

UNIVERSITY OF SWAZILAND

FACULTY OF EDUCATION

DEPARTMENT OF EDUCATIONAL FOUNDATIONS AND MANAGEMENT

STATISTICAL FORMULAE

$$S^2 = \frac{\sum (x-\bar{x})^2}{n-1}$$

 $S = \sqrt{\frac{\sum (x-\bar{x})^2}{n-1}}$

Sample Standard Deviation:

Pearson's Product Moment Correlation Coefficient:

$$r_{xy} = \frac{n \sum xy - \sum x \sum y}{\sqrt{[n \sum x^2 - (\sum x)^2][n \sum y^2 - (\sum y)^2]}}$$

Spearman's rank order correlation coefficient:	$rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$
--	--

Chi-squared Test Statistic:

$$x^2 = \sum \frac{(0-E)^2}{E}$$

 $Z=\frac{x-\overline{x}}{s}$

Z-score:

Standardisation:

 $z = \frac{u-\mu}{\sigma}$ Where Z ~N(0,1)

T-score:

.

 $T=50+10\,(\frac{x-\overline{x}}{s})$

Student t-test:
$$t = \frac{\sqrt{(n-1)} \quad \underline{\zeta} d}{\sqrt{n \underline{\zeta} d^2 - (\underline{\zeta} d)^2}}$$

336 Fundamenials of Social Statistics

		Level of significance for a directional (one-tailed) test					
		.10	,05	,025	,01	,005	,0005
ð		Level of significance for a non-directional (two-tailed) test					
-	df	,20	.10	. 05	•02	<i>'</i> 01	.001
	1	3.078	6.314	12.706	3).821	63.657	636.619
	2	1.886	2.920	4.303	6.965	9.925	31.598
	3	1.638	2.353	3.182	4.541	5.841	12.941
	4	1.533	2.132	2.776	3.747	4.604	8.610
	5	1.476	2.015	2.571	3.365	4.032	6.859
	6	1.440	1.943	2.447	3.143	3.707	5.959
	7	1.415	1.895	2.365	2.998	3.499	5.405
	8	1.397	1.860	2.306	2.896	3.355	5.041
	9	1.383	1.833	2.262	2.821	3.250	4.781
	10	1.372	1.812	2.228	2.764	^3.169	4.587
	11	1.363	1.796	2.201	2.718	3.106	4.437
	12	1.356	1.782	2.179	2.681	3.055	4.318
	13	1.350	1.771	2.160	2.650	3.012	4.221
	14	1.345	1.761	2.145	2.624	2.977	4.140
	15	1.341	1.753	2.131	2.602	2.947	4.073
	16 17 18 19 20	1.337 1.333 1.330 1.328 1.325	1.746 1.740 1.734 1.729 1.725	2,120 2.110 2.101 2.093 2.086	2.583 2.567 2.552 2.539 2.528	2.898 2.878 2.861 2.845	4.015 [.] 3.965 3.922 3.883 3.850
	21	1.323	1.721	2.080	2.518	2.831	3.819
	22	1.321	1.717	2.074	2.508	2.819	3.792
	23	1.319	1.714	2.069	2.500	2.807	3.767
	24	1.318	1.711	2.064	2.492	2.797	3.745
	25	1.316	1.708	2.060	2.485	2.787	3:725
	26	1.315	1.706	2.056	2.479	2.779	3.707
	27	1.314	1.703	2.052	2.473	2.771	3.690
	28	1.313	1.701	2.048	2.467	2.763	3.674
	29	1.311	1.699	2.045	2.462	2.756	3.659
	30	1.310	1.697	2.042	2.457	2.750	3.646
	40	1.303	1.684	2.021	2.423	2.704	3.551
	60	1.296	1.671	2.000	2.390	2.660	3.460
	120	1.289	1.658	1.980	2.358	2.617	3.373
	∞	1.282	1.645	1.960	2.326	2.576	3.291

 TABLE II
 Critical Values of t: Student t-test

T Test.

Find the row corresponding to the indicated degrees of freedom, find the column corresponding to the chosen level of significance, taking into account the type of H_1 (directional or non-directional). The critical value t_{crit} is at the intersection of that row and that column, if $t_{ors} \ge t_{crit}$, then H_0 is rejected.

Statistical Tables 341

		Level of significance for a non-directional test					
	đf	,20	,10	¥05	02	+01 I	.001
	12345	1.64 3.22 4.64 5.99 7.29	2.71 4.60 6.25 7.78 9.24	3.84 5.99 7.82 9.49 11.07	5.41 7.82 9.84 11.67 13.39	6.64 9.21 11:34 13.28 15.09	10.83 13.82 16.27 18.46 20.52
<u> </u>	6	\$.56	10.64	12.59	15.03	16.81	22.46
	7	9.80	12.02	14.07	16.62	18.48	24.32
	8	11.03	13.36	15.51	18.17	20.09	26.12
	9	12.24	14.68	16.92	19.48	21.67	27.88
	10	13.44	15.99	18.31	21.16	23.21	29.59
	211	14.63	17.28	19.68	22.62	24.72	31.26
	12	15.81	18.55	21.03	24.05	26.22	32.91
	13	16.98	19.81	22.36	25.47	27.69	34.53
	14	18.15	21.06	23.68	26.87	29.14	36.12
	15	19.31	22.31	25.00	28.26	30.58	37.70
	16	20.46	23.54	26.30	29.63	32.00	39.29
	17	21.62	24.77	27.59	31.00	33.4]	40.75
	18	22.76	25.99	28.87	32.35	34.80	42.31
	19	23.90	27.20	30.14	33.69	36.19	43.82
	20	25.04	28.41	31.41	35.02	37.57	45.32
`s	21 22 23 24 25	26.17 27.30 28.43 29.55 30.68	29.62 30.81 32.01 33.20 34.38	32.67 33.92 35.17 36.42 37.65	36.34 37.66 38.97 40.27 41.57	38.93 40.29 41.64 42.98 44.31	46.80 48.27 49.73 51.18 52.62
	26	31.80	35.56	38.88	42.86	45.64	54.05
	27	32.91	36.74	40.11	44.14	46.96	55.48
	28	34.03	37.92	41.34	45.42	48.28	56.89
	29	35.14	39.09	42.69	46.69	49.59	58.30
	30	36.25	40.26	43.77	47.96	50.89	59.70
	32	38.47	42.59	46.19	50.49	53.49	62.49
	34	40.68	44.90	48.60	53.00	56.06	65.25
	36	42.88	47.21	51.00	55.49	58.62	67.99
	38	45.08	49.51	53.38	57.97	61.16	70.70
	40	47.27	51.81	55.76	60.44	63.69	73.40
	44	51.64	56.37	60.48	65.34	68.71	78.75
	48	55.99	60.91	65.17	70.20	73.68	84.04
	52	60.33	65.42	69.83	75.02	78.62	89.27
	56	64.66	69.92	74.47	79.82	83.51	94.46
	60	68.97	74.40	79.08	84.58	88.38	99.61

TABLE IV Critical Values of Chi Square

Find the row corresponding to the indicated degrees of freedom, find the column corresponding to the chosen level of significance, the critical value of χ^2_{ch} is at the intersection of that row and that column. If $\chi^2_{obs} \ge \chi^2_{crit}$ then H_a is rejected.

. .