UNIVERSITY OF SWAZILAND

FACULTY OF EDUCATION

DEPARTMENT OF EDUCATIONAL FOUNDATIONS AND MANAGEMENT

FOR

INSTITUTE OF DISTANCE EDUCATION AND FULL TIME PROGRAMMES

SUPPLEMENTARY EXAMINATION PAPER - JULY, 2017

BACHELOR OF EDUCATION 111 (B.Ed.) Full-Time BACHELOR OF EDUCATION 111 (B.Ed.) Part-Time POSTGRADUATE CERTIFICATE IN EDUCATION (PGCE) Part-Time

COURSE CODE : EDF 322

:

TITLE OF PAPER : EDUCATIONAL RESEARCH

TIME ALLOWED : THREE HOURS

INSTRUCTIONS

 THIS PAPER IS DIVIDED INTO TWO SECTIONS (A AND B). ANSWER ANY TWO QUESTIONS FROM EACH SECTION
 UTILISE THE ATTACHED STATISTICAL FORMULAS AND TABLES WHERE NECESSARY.
 100

TOTAL MARKS :

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE INVIGILATOR.

1

SECTION A

- 1. Discuss any three non-probability sampling techniques indicating their applicability in educational research *Total: 25 Marks.*
- 2. Citing any five examples of your choice, discuss the importance of a pilot study in educational research *Total: 25 Marks*
- 3. Discuss the major components of a research report *Total: 25 Marks*

SECTION B

4. Two lecturers conducted an interview for prospective students and awarded them marks as follows;

Table I: Interview marks

Student	А	В	C	D	E	F	G	H	Ι	J
Lecturer	50	48	52	70	70	72	55	70	80	72
Х										
Lecturer	45	44	60	66	80	60	40	68	84	72
Y										

Using data on Table 1 above

i)	Calculate the standard deviation of marks awarded by lecture X	(12 marks)
ii)	Calculate the variance of scores awarded by lecturer Y	(7 marks)
iii)	What is the range of marks awarded by lecturer Y	(3 marks)
iv)	Calculate the inclusive range of marks awarded by lecturer X	(3 marks)
		[Total 25 Marks]

5. Table 2 below shows the marks of learners taught in English and also through code switching

PUPIL	MEDIUM OF INSTRUCTION			
	ENGLISH	CODE SWITCHING		
A	69	72		
В	58	65		
С	70	80		
D	32	56		
E	40	40		
F	57	70		
G —	65	70		
Н	30	54		
I	70	75		
J	62	70		

Table 2 marks obtained from English and also from Code Switching

Carry out a t-test at 5% significance level to test the hypothesis that there is no significant difference in performance between pupils taught in English and those taught through code switching and comment.

(25 marks)

[Total 25 Marks]

6. Table 3 below shows marks obtained in two tests

Table 3 showing marks from two tests

Pupil	А	В	С	D	E	F	G	Η	Ι	J
Test (i)	25	38	35	30	20	30	.40	25	35	25
Test(ii)	30	46	50	48	26	36	40	31	40	32

Calculate Spearman's rank order correlation coefficient and comment on it. (25 marks)

[Total 25 Marks]

TABLE II Critical Valu	s of t: Student t-test
------------------------	------------------------

T Test.

		Level of significance for a directional (one-tailed) test							
		.10	,05	,025 ,01 ,0			,0005		
ð		Leve	of significance for a non-directional (two-tailed) test						
	df	.20	.10	. 05	,02	.01	.001		
	1	3.078	6.314	12,706	31.821	63.657	636.619		
	2	1.886	2.920	4,303	6.965	9.925	31.598		
	3	1.638	2.353	3,182	4.541	5.841	12.941		
	4	1.533	2.132	2,776	3.747	4.604	8.610		
	5	1.476	2.015	2,571	3.365	4.032	6.859		
	6	1.440	1.943	2.447	3.143	3.707	5.959		
	7	1.415	1.895	2.365	2.998	3.499	5.405		
	8	1.397	1.860	2.306	2.896	3.355	5.041		
	9	1.38 3	1.833	2.262	2.821	3.250	4.781		
	10	1.372	1.812	2.228	2.764	3.169	4.587		
	11	1.363	1.796	2.201	2.718	3.106	4.437		
	12	1.356	1.782	2.179	2.681	3.055	4.318		
	13	1.350	1.771	2.160	2.650	3.012	4.221		
	14	1.345	1.761	2.145	2.624	2.977	4.140		
	15	1.341	1.753	2.131	2.602	2.947	4.073		
	16	1.337	1.746	2,120	2.583	2.921	4.015 [.]		
	17	1.333	1.740	2,110	2.567	2.898	3.965		
	18	1.330	1.734	2,101	2.552	2.878	3.922		
	19	1.328	1.729	2,093	2.539	2.861	3.883		
	20	1.325	1.725	2,086	2.528	2.845	3.850		
	21	1.323	1.721	2.080	2.518	2.831	3.819		
	22	1.321	1.717	2.074	2.508	2.819	3.792		
	23	1.319	1.714	2.069	2.500	2.807	3.767		
	24	1.318	1.711	2.064	2.492	2.797	3.745		
	25	1.316	1.708	2.060	2.485	2.787	3.725		
	26	1.315	1.706	2.056	2.479	2.779	3.707		
	27	1.314	1.703	2.052	2.473	2.771	3.690		
	28	1.313	1.701	2.048	2.467	2.763	3.674		
	29	1.311	1.699	2.045	2.462	2.756	3.659		
	30	1.310	1.697	2.042	2.457	2.750	5.23.646		
	40	1.303	1.684	2.021	2.423	2.704	3.551		
	60	1.296	1.671	2.000	2.390	2.660	3.460		
	120	1.289	1.658	1.980	2.358	2.617	3.373		
		1.282	1.645	1.960	2.326	2.576	3.291		

Find the row corresponding to the indicated degrees of freedom, find the column corresponding to the chosen level of significance, taking into account the type of $H_{\rm t}$ (directional or non-directional). The critical value $t_{\rm crit}$ is at the intersection of that row and that column. If $t_{\rm out} \ge t_{\rm crit}$ then $H_{\rm o}$ is rejected.

FACULTY OF EDUCATION

DEPARTMENT OF EDUCATIONAL FOUNDATIONS AND MANAGEMENT

STATISTICAL FORMULAE

Sample Variance:

$$S^2 = \frac{\sum (x-\overline{x})^2}{n-1}$$

Sample Standard Deviation:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

Product moment correlation coefficient:

$$r_{xy} = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

Spearman's rank order correlation coefficient: $rho = 1 - \frac{6\Sigma d^2}{n(n^2-1)}$

Chi-squared Test Statistic:

$$x^2 = \sum \frac{(0-E)^2}{E}$$

Z-score:
$$z =$$

Standardisation: $z = \frac{u-\mu}{\sigma}$ Where Z ~N(0,1)

 $\frac{x-\overline{x}}{s}$

T-score: $T = 50 + 10 \left(\frac{x-\overline{x}}{s}\right)$

Student t-test:
$$t = \frac{\sqrt{(n-1)} \sum d}{\sqrt{n \sum d^2 - (\sum d)^2}}$$

ANALYSIS OF VARIANCE (ANOVA) FORMULAE

1.
$$SS(TOTAL) = \sum x^2 - \frac{(\sum x)^2}{n}$$

2.
$$SST = SS(Treatment) = SS(BtwnGrps) = \sum \frac{T_i^2}{n_i} - \frac{(\sum x)^2}{n} = \frac{T_1^2}{n_1} + \frac{T_2^2}{n_2} + \dots + \frac{T_p^2}{n_p} - \frac{(\sum x)^2}{n}$$

3.
$$SSE = SS (TOTAL) - SST$$

[N.B. SSE = SS (Error) = SS (Within Groups) = SS (Residual)]

- $4. \quad MST = \frac{SST}{p-1}$
- 5. $MSE = \frac{SSE}{n-p}$ _____

$$6. \quad F_{calc} = \frac{MST}{MSE}$$

ONE-WAY ANOVA TABLE

Source of variation	Sum of squares	Degrees of Freedom (df)	Mean Square	F _{calc}
Between Groups (Treatments)	SST	p-1	$MST = \frac{SST}{p-1}$	
Within Groups (Error or Residual)	SSE	n-p	$MSE = \frac{SSE}{n-p}$	$F_{calc} = \frac{MST}{MSE}$
Total	SS(TOTAL)	n-1		

n = total number of observations

p = number of treatments (number of samples or groups)

- p-1 = numerator degrees of freedom
- n-p = denominator degrees of freedom

 T_i = total for group i(i = 1, 2, 3, ..., p)

 n_i = number of observations in group i(i = 1, 2, 3, ..., p)