UNIVERSITY OF SWATINI

FACULTY OF EDUCATION

DEPARTMENT OF EDUCATIONAL FOUNDATIONS AND MANAGEMENT

FOR

INSTITUTE OF POST GRADUATE STUDIES

NOVEMBER, 2018 FINAL EXAMINATION PAPER

MASTER OF EDUCATION (M.Ed)

COURSE CODE	:	EFM 601
TITLE OF PAPER	:	QUANTITATIVE METHODS OF RESEARCH
TIME ALLOWED	: *	THREE HOURS
INSTRUCTIONS	:	1. THIS PAPER IS DIVIDED INTO TWO SECTIONS (A AND B). ANSWER ANY TWO QUESTIONS FROM EACH SECTION

QUESTIONS FROM EACH SECTION 2. UTILISE THE ATTACHED STATISTICAL FORMULAS AND TABLES WHERE NECESSARY.

TOTAL MARKS : 100

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE INVIGILATOR.

SECTION A

1. How justifiable is the assertion that the quantitative research methodology is not as applicable to educational research as the qualitative research methodology.

Total: 25 Marks.

- Examine the view that the research hypotheses are as critical as the research questions / objectives in an educational research
 Total: 25 Marks.
- 3. Discuss the assertion that in an educational study, a questionnaire is a better data collection instrument than an interview. *Total: 25 Marks*.

SECTION B

Question 4

Agroup of ten(10) Bed students wrote a Developmental Psychology test and got marks shown in set A. The same group of students wrote a Research Methods and Statistics test and got marks shown in set B.

Table 1:Marks obtained in Developmental Psychology and Research Methods and Statistics test

Student	1	2	3	4	5	6	7	8	9	10
Set A	50	70	50	65	30	80	40	45	75	55
Set B	70	90	60	60	20	60	60	80	40	90

- a) Using information in Table 1 above, find the correlation coefficient using Spearman's rank order and comment on it. (15 marks)
- b) Plot a scatter gram using the same information in Table 1. (10 marks)

Question 5

Ten (10) pupils wrote a Physics and Maths test and obtain the following results shown in the table below.

Table 2: Marks obtained in Physics and Maths tests.

Pupil	A	В	C	D	E	F	G	Η	Ι	J	Mean	Standard
												deviation
Physics	30	80	50	50	90	10	30	70	60	80	55	24.6
Maths	90	10	60	70	90	50	50	60	60	40	56	22.3

a) In which set of marks did pupil E perform better and why?

(12 marks)

b)	Compute the variance for Physics marks.	(7 marks)
c)	Determine the Standard Deviation for Physics marks.	(2 marks)
d)	State two advantages of the mean.	(4 marks)

Question 6

A clinical Psychologist is interested in finding out the prevalence of depression and anxiety in four sections in her locality. She is convinced that the occurrence of depression varies with the level of poverty one has. She collected data presented in Table 3 below.

Table 3: Prevalence of poverty

Section	A	В	С	D
Prevalence rate	22	31	45	48
Level of poverty	14	8	10	12

a) Which test statistic is most applicable to test this data?

(2 marks)

b) Test at 5% significance level whether there is an association between prevalence of depression and level of poverty. (23 marks)

				5 	T	Test.			
	6 <i>∳</i> 101	damenials of TABLE I	I Critica	Values of	t: Studer	it t-test			
				005 1		1981 1	1		
		Level	of significan	ce for a nor	hdirectional	(Invo-tailed)	.001		
0	ar	,20	01.	.05		63,657	636,619		
	1 2 7	3.078 1.886 1.638 1.533 1.533	6.314 2.920 2.353 2.132 2.015	12,706 4,303 3,182 2,776 2,571	31,821 6,265 4,541 3,747 3,365	53.657 9.925 5.841 4.604 4.032	31.598 12.941 8.610 6.859		
	5 7 8 9	1,476 1,440 1,415 1,397 1,383 1,372	1.943 1.895 1.860 1.833 1.812	2,447 2,365 2,306 2,262 2,282 2,223	3.143 2.998 2.896 2.821 2.764	3,707 3,499 3,355 3,250 3,169	5.959 5.405 5.041 4.781 4.587		
	11 12 13 14	1.363 1.356 1.350 1.345 1.341	1.796 1.782 1.771 1.761 1.753	2.201 2.179 2.160 2.145 2.131	2.718 2.681 2.650 2.624 2.602	3.106 3.055 3.012 2.977 2.947	4.437 4.318 4.221 4.140 4.073		
	15 16 17 18 19 20	1.337 1.333 1.330 1.328 1.325	1.746 1.740 1.734 1.729 1.725	2,120 2.110 2.101 2.093 2.086	2.583 2.567 2.552 2.539 2.528	2.921 2.898 2.878 2.861 2.845	4.015 3.965 3.922 3.883 3.850		
	21 22 23 24 25	1.323 1.321 1.319 1.318	1,721 1,717 1,714 1,711 1,708	2.080 2.074 2.069 2.064 2.060		2.831 2.819 2.807 2.797 2.797 2.787	3.819 3.792 3.767 3.745 3.725		
	26 27 28 29 30	1.315 1.314 1.313 1.313	1.706 1.703 1.701 1.699 1.697	2.056 2.052 2.048 2.045 2.045 2.042	2.467 2.462	2.756	3.707 3.690 3.674 3.659 3.646		
	40 60 120 20	1.303 1.296 1.1.289	1.684 1.671 1.658	2.000 1.980 1.960	2.358 2.326	2.660 2.617			

Find the row corresponding to the indicated degrees of freedom, find the column corresponding to the chosen level of significance, taking into account the type of H_1 (directional or non-directional). The critical value $t_{\rm cut}$ is at the intersection of that row and that column. If $t_{\rm cut} \ge t_{\rm cut}$, then H_2 is rejected.

7

FACULTY OF EDUCATION

DEPARTMENT OF EDUCATIONAL FOUNDATIONS AND MANAGEMENT

STATISTICAL FORMULAE

Sample Variance:

$$S^2 = \frac{\sum (x-\overline{x})^2}{n-1}$$

Sample Standard Deviation:
$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}}$$

Product moment correlation coefficient:

$$r_{xy} = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

Spearman's rank order correlation coefficient: $rho = 1 - \frac{1}{r}$

$$o = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

Chi-squared Test Statistic:
$$x^2 = \sum \frac{(0-E)^2}{E}$$

Z-score:

$$Z = \frac{x - \overline{x}}{s}$$

Standardisation: $z = \frac{u-\mu}{\sigma}$ Where Z ~N(0,1)

T-score:

$$T=50+10\left(\frac{x-x}{s}\right)$$

Student t-test:

$$t = \frac{\sqrt{(n-1)}\sum d}{\sqrt{n\sum d^2 - (\sum d)^2}}$$

ANALYSIS OF VARIANCE (ANOVA)

1.
$$SS(TOTAL) = \sum x^2 - \frac{(\sum x)^2}{n}$$

2.
$$SST = SS(\text{Treatment}) = SS(Btwn Grps) = \sum \frac{T_i^2}{n_i} - \frac{(\sum x)^2}{n} - \frac{T_1^2}{n_1} + \frac{T_2^2}{n_2} + \dots + \frac{T_p^2}{n_p} - \frac{(\sum x)^2}{n}$$

3. SSE = SS (TOTAL) - SST

[N.B. SSE = SS (Error) = SS (Within Groups) = SS (Residual)]

- $4. \qquad MST = \frac{SST}{p-1}$
- 5. $MSE = \frac{SSE}{n-p}$
- $6. \quad F_{calc} = \frac{MST}{MSE}$

ONE-WAY ANOVA TABLE

Source of variation	Sum of squares	Degrees of Freedom (df)	Mean Square	F _{calc}
Between Groups (Treatments)	SST	<i>p-1</i>	$MST = \frac{SST}{p-1}$	
Within Groups (Error or Residual)	SSE	n-p	$MSE = \frac{SSE}{n-p}$	$F_{calc} = \frac{MST}{MSE}$
Total	SS(TOTAL)	n-1		

n = total number of observations

p = number of treatments (number of samples or groups)

p-1 = numerator degrees of freedom

n-p = denominator degrees of freedom

 T_i = total for group i(i = 1, 2, 3, ..., p)

 n_i = number of observations in group i(i = 1, 2, 3, ..., p)