OF PAPER: INTRODUCTION TO HISTORICAL AND COMPARATIVE LINGUISTICS: BANTU

COURSE NUMBER: AL413/IDE AL413

TIME ALLOWED: THREE (3) HOURS

INSTRUCTIONS: 1. ANSWER FOUR (4) QUESTIONS IN ALL.
2. CHOOSE ONE QUESTION FROM EACH SECTION
3. LINGUISTIC EXPRESSIONS AND FORMALISM SHOULD BE USED WHENEVER APPROPRIATE.
4. ALL EXAMPLES SHOULD BE GLOSSED

SECTION A
 LEXICOSTATISTICS AND GLOTTOCHRONOLOGY

Answer Question 1

Question 1

Examine the shared cognate percentage figures for the following ten hypothetical languages:

A
68 B
$13 \quad 11 \quad \mathrm{C}$
$\begin{array}{llll}39 & 37 & 9 & \mathrm{D}\end{array}$
$\begin{array}{lllll}39 & 36 & 8 & 66 & \mathrm{E}\end{array}$
$\begin{array}{llllll}35 & 33 & 10 & 67 & 65 & \mathrm{~F}\end{array}$
$\begin{array}{lllllll}37 & 35 & 9 & 57 & 53 & 50 & \text { G }\end{array}$
$\begin{array}{llllllll}30 & 33 & 36 & 54 & 56 & 33 & 34 & \mathrm{H}\end{array}$
$\begin{array}{lllllllll}22 & 28 & 27 & 53 & 51 & 46 & 57 & 67 & \text { I }\end{array}$
$\begin{array}{llllllllll}31 & 24 & 21 & 56 & 54 & 47 & 58 & 66 & 69 & \text { J }\end{array}$
With reference to the above data,
(i) Find out which languages are most closely related to each other and group them accordingly.
(3 marks)
(ii) Work out the shared cognate percentages between the different groups, to find the second level of linguistic relationship.
(iii) Show the relationship of these languages in a family tree diagram.
(iv) Estimate according to glottochronology the period of time the following languages may have separated from each other:

1. Language H from language I
2. Language A from language G
(9 marks)
3. Language C from language E

Note: Use the formula below to work out the time depth:

$$
t=\frac{\log C}{2 \log r}
$$

The value of \mathbf{r} in this formula is set at 0.805

SECTION B

Choose one question from this section

Question 2

a) Consider the following data from four Bantu languages and do the tasks that follow.

SiSwati	IsiZulu	S.Sesotho	Bemba	
umfati	umfazi	musadi	umukafi	'woman/wife'
umuti	umuzi	mutsi	umufi	'village/home'
emanti	amanzi	metsi	ame $f i$	'water'
imbuti	imbuzi	podi	imbufi	'goat'
tinkh'uni	izinkuni	dibeso	inkuni	'firewood'

i) Which of the four languages whose data appear above do you consider to share cognates, if any? Justify your claim.
(3 marks)
ii) In the languages you consider to share cognate forms, identify and list the consonant correspondences found in the nominal stems. Do not include identical sets.
(3 marks)
iii) For each set of consonant correspondences you identified in (b(ii)) above, reconstruct the proto-consonant and state the strategy you used to arrive at the proto-consonant.
iv) State the phonological processes which took place during the evolution of the following forms from the Proto-language:

1. The Bemba stem [umukafi] 'woman/wife'.
2. The IsiZulu stem [imbuzi] 'goat'
3. The siSwati stem [tink'uni] 'firewood'
b) With the use of distinctive features, formalize the diachronic phonological rules you stated in (iv).

Question 3

Malcolm Guthrie proposed criteria to be used in the identification of languages as belonging to the Bantu family. Discuss and critically evaluate these criteria.
[25 marks]

SECTION C

Choose one question from this section

Question 4

With the aid of examples from relevant Bantu languages, discuss the operation of each of the following Laws:
a) Dahl's Law
b) Meinhof's Law
c) Kwanyama Law

[25 marks]

Question 5

a) Consider the data from Lamba, a Bantu language, and answer he questions which follow:

-cit-	'do'	-citil-	'do for'
-pat-	'scold'	-patil-	'scold for'
-kunt-	'shake'	-kuntil-	'shake for'
-cet-	'spy'	-cetel-	'spy for'
-sonk-	''pay tax'	-sonkel-	'pay tax for'
-lim-	'cultivate'	-limin-	'cultivate for'
-kan-	'deny'	-kanin-	'deny for'
-pum-	'beat'	-pumin-	'beat for'
-fweny-	'scratch'	-fwenyen-	'scratch for'
-pon-	'fall'	-ponen-	'fall for'

i) Name the verbal extension found in the data above. (2 marks)
ii) List the allomorphs of this extension in Lamba, and describe the distribution of the allomorphs.
b) Compare the Lamba data provided in (a) above with those given below:

-alul-	'change'	-alwil-	'change for'
-cofol-	'bend'	-cofwel-	'bend for'
-kamun-	'tear'	-kamwin-	'tear for'
-konon-	'break'	-konwen-	'break for'

Explain how the extension you mentioned in (a (i)) above operates in these items.
(5 marks)
c) With illustrations from Meinhof's Ur-Bantu and siSwati vowel systems, discuss the * $7>5$ vowel shift.
(10 marks)

SECTION D

Choose one question from this section

Question 6

a) List the Proto-Bantu nominal prefixes 19-23 and for each class show how the Proto-Bantu prefix is reflected in any one modern day Bantu language.
(10 marks)
b) Wherever the Proto-Bantu prefix has changed in a modern Bantu language illustrated in (a) above, state the phonological process which occurred during the development of the modern Bantu language.
c) With illustrations from any Bantu language, distinguish between the following linguistic concepts:
i) open and close vowels;
(4 marks)
ii) tone spread and tonal shift;

Question 7

Consider the data from two Bantu languages; Setswana and Thivenda and answer he questions which follow:

1. Setswana

rat-a	rat ${ }^{\text {w }}$-a	rat-iw-a	'be loved'
bop-a	bot ${ }^{\text {w- }}$-a	bop-iw-a	'be moulded'
t+hab-a	t4 ${ }^{\text {a }}{ }^{\text {a }}{ }^{\text {w }}$-a	t+ ${ }^{\text {hab-iw-a }}$	'be stabbed'
bof-a	bor ${ }^{\text {w }}$ - ${ }^{\text {a }}$	bof-iw-a	'be bound'
rem-a	ren ${ }^{\text {w }}$-a	rem-iw-a	'be chopped'
d ${ }^{\text {a }}$	ds-IW-a		'be eaten'
ts'amay-a	ts'amay ${ }^{\text {w-a }}$		ts'amay-iw-a

3. Tshivenda

vul-a	vul $^{W}-\mathrm{a}$	vul-iw-a	'be opened'
ϕ at-a	ϕ at $^{\text {w }}$-a	ϕ at-iw-a	'be built'
$\phi-\mathrm{a}$		$\phi-\mathrm{i} w-\mathrm{a}$	'be given'
$\mathrm{k}-\mathrm{a}$		$\mathrm{k}-\mathrm{iw-a}$	'be picked'

tap'-a	tap $^{\nu}-\mathrm{a}$	tap'-iw-a	'be flicked'
$\mathrm{k}^{\mathrm{h}} \mathrm{op}^{\mathrm{h}}-\mathrm{a}$	$\mathrm{k}^{\mathrm{h}} \mathrm{op}^{h \mathrm{~h}}-\mathrm{a}$	$\mathrm{k}^{\mathrm{h}} \mathrm{op}^{h}-\mathrm{i} \mathrm{w}-\mathrm{a}$	'be broken off'

Discuss, with relevant examples, the formation of the passive in siSwati and then compare and contrast it with the formation of the passive in Setswana and Thivenda as exemplified in the above data.

[25 marks]

tap'-a	tap ${ }^{\gamma}-\mathrm{a}$	tap'-iw-a	'be flicked'
$\mathrm{k}^{\mathrm{h}} \mathrm{op}^{\mathrm{h}}-\mathrm{a}$	$\mathrm{k}^{\mathrm{h}} \mathrm{op}^{h \gamma-a}$	$\mathrm{k}^{\mathrm{h}} \mathrm{op}^{h}-\mathrm{iw-a}$	'be broken off

Discuss, with relevant examples, the formation of the passive in siSwati and then compare and contrast it with the formation of the passive in Setswana and Thivenda as exemplified in the above data.

[25 marks]

