UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION PAPER: JULY 2014

TITLE OF PAPER:		BIOCHEMISTRY & CELL BIOLOGY
COURSE CODE:		B203
TIME ALLOWED:		THREE HOURS
INSTRUCTIONS:	1.	ANSWER QUESTION 1 (COMPULSORY) AND ANY <u>THREE</u> OTHER QUESTIONS.
	2.	ANSWER A TOTAL OF <u>4 (FOUR)</u> QUESTIONS
	2.	EACH QUESTION CARRIES TWENTY FIVE (25) MARKS
	3.	ILLUSTRATE YOUR ANSWERS WITH LARGE AND CLEARLY LABELLED DIAGRAMS WHERE APPROPRIATE

SPECIAL REQUIREMENTS:

*

-2

1. CANDIDATES MAY USE CALCULATORS

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATORS

[PLEASE TURN OVER]

(2 marks)

Section A (Compulsory)

Answer all questions in this section

Ques	stion 1	
(a)	Explain the differences between the following:	
	(i). Isoelectric point and pKa,	(1 mark)
	(ii). Competitive inhibition and non-competitive inhibition,	(1 mark)
	(iii). Coenzyme and prosthetic group,	(1 mark)
	(iv). Zwitterion and an acidic amino acid,	(1 mark)
	(v). Apoenzyme and holoenzyme,	(1 mark)
	(vi). Carcinogen and mutagen,	(1 mark)
	(vii). Anabolism and catabolism.	(1 mark)

- (b) Sketch a labelled typical titration curve for a weak acid, HA, whose pK_a is 3.2. Indicate on the curve, with an arrow, where the 20% of HA has dissociated and indicate pH value on your sketch. (4 marks)
- (c) State any 2 ways by which a nascent RNA can be processed. (2 marks)
- (d) Explain the role of aminoacyl-tRNA synthetase in gene expression.
- (e) Explain the role of named micronutrients in fight against reactive oxygen species. (5 marks)
- (f) Explain in biochemical terms, why individuals with a thiamine deficient diet have relatively high levels of pyruvate in their blood. (5 marks)

[PLEASE TURN OVER]

Section B

Answer any three questions from this Section.

Question 2

Discuss the expression and control of the *lac* and *trp* operons, highlighting the difference between negative and positive control. (25 marks)

Question 3

Give a detailed outline of steps during the Edman degradation method of amino acid sequencing, including the determination of C- and N-termini.

(25 marks)

Question 4

- (a) Distinguish between *de novo* and salvage pathways for nucleotide biosynthesis. (5 marks)
- (b) The Krebs cycle is a central hub of cellular metabolism. Discuss. (20 marks)

Question 5

Explain how cytosolic pyruvate from glycolysis results in the formation of ATP in the mitochondria, highlighting the stages where substrate-level phosphorylation and oxidative phosphorylation occur. (25 marks)

Question 6

Explain the production of ATP and NADPH during the coupling of photosystems I and II. Illustrate how these high-energy molecules are central to carbon dioxide fixation and reduction during photosynthesis. (25 marks)

END OF QUESTION PAPER

ł