UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER: MAY 2015

TITLE OF PAPER: BIOCHEMISTRY \& CELL BIOLOGY

COURSE CODE: B203

TIME ALLOWED: THREE HOURS

INSTRUCTIONS: 1. ANSWER QUESTION 1 (COMPULSORY) AND ANY THREE OTHER QUESTIONS.
2. ANSWER A TOTAL OF 4 (FOUR) QUUESTIONS
2. EACH QUESTION CARRIES TWENTY FIVE (25) MARKS
3. ILLUSTRATE YOUR ANSWERS WITH LARGE AND CLEARLY LABELLED DIAGRAMS WHERE APPROPRIATE

SPECIAL REQUIREMENTS:

1. CANDIDATES MAY USE CALCULATORS

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATORS

Section A: Compulsory (Answer all questions in this section) Question 1
(a) (i) Calculate the pH of a solution of 0.001 M NaOH .
(ii) One amino acid can exist in protonated (XH^{+}) and unprotonated (X) states. The $\mathrm{p} K_{\mathrm{a}}$ for the protonation of amino acid X to form XH^{+}is 6 . What fraction of total amino acid will be in the protonated form at pH 7.0 ?
(b) Consider the β-oxidation of 1 mol of fatty acid palmitate (C16:0).
(i) In what cellular compartment does this process occur?
(ii) What is the final product of this process?
(iii) Determine moles of this final product produced per mole of C16:0.
(iv) Explain then development of a pathological condition caused by failure of the utilization of this product during extreme starvation/fasting.
(5 marks)
(c) (i) For the reaction $A \rightarrow B, \Delta G^{\circ}=-60 \mathrm{~kJ} / \mathrm{mol}$. The reaction is started with 10 mmol of A; no B is initially present. After 24 hours, analysis reveals the presence of 9.5 mmol of $\mathrm{B}, 0.5 \mathrm{mmol}$ of A . Explain these observations.
(2 marks)
(ii) In glycolysis, the enzyme pyruvate kinase catalyzes this reaction:

Phosphoenolpyruvate + ADP \rightarrow pyruvate + ATP
Use the data below to calculate the equilibrium constant for this reaction at $25^{\circ} \mathrm{C}$.
(2 marks)
Reaction 1) ATP $\rightarrow A D P+P_{i}$,
$\Delta G^{10}=-30.5 \mathrm{~kJ} / \mathrm{mol}$
Reaction 2) phosphoenolpyruvate \rightarrow pyruvate $+P_{i}, \Delta G^{\prime 0}=-61.9 \mathrm{~kJ} / \mathrm{mol}$ $R=8.315 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
(c) Innocentia measured the initial rates of an enzyme-catalyzed reaction as a function of substrate concentrations in the presence and absence of an unspecified inhibitor. Results are shown in the table below.

[S]/M	V_{0} (mmol product/second)	
	Inhibitor absent	Inhibitor present
0.001	15	9
0.002	25	15
0.005	35	25
0.01	41	33
0.02	45	40
0.05	48	45.5
0.1	49	47
0.2	49.5	49
0.5	50	49.5
1	50	50
2	50	50

Without drawing any graph, use the data above to elucidate the $V_{\text {max }}$ and K_{m} in the absence and presence of inhibitor. Hence, deduce the type of inhibitor present and explain the mechanism of its inhibitory action.
(8 marks)

Section B

Answer any three questions from this Section.

Question 2

(a) Using annotated diagrams, discuss the semi-conservative replication of DNA, highlighting the roles of different proteins involved in the process. (10 marks)
(b) Discuss eukaryotic gene expression and its control.

Question 3

With reference to five methods, discuss the principles and technicalities involved during protein purification.

Question 4

Examine and illustrate how energy is metabolically extracted from carbohydrates, triglycerides and proteins, indicating the cellular compartmentalization of such extraction(s).

Question 5

Knowledge of nutrients and human nutrition is essential to mankind. Critique this assertion.
(25 marks)

Question 6

Explain the production of ATP and NADPH in green plants, illustrating how these molecules are central to carbohydrate anabolism.

