UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/12

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I

COURSE NUMBER: C111

TIME:

THREE (3) HOURS

INSTRUCTIONS:

- (i) Answer all questions in section A (total 40 marks)
- (ii) Answer any 3 questions in section B (Each question is 20 marks)

Non-programmable electronic calculators may be used.

A data sheet, a periodic table and answer sheet for section A are attached

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR.

SECTION A (40 Marks)

This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all 40 questions.

1

1.	The chemical sy	mbol of mar	iganese is			
	(A) Mg	(B) Mn	(C) Mo	(D) Md	(E) Ma	
2.	The number of this ¹⁹ F (Z=9) is	protons, n	eutrons, and ele	ctrons, resp	ectively in a 1	neutral atom of
	(A) 9 proto	ns, 19 neutr	ons, and 9 elect	rons	-	• •
	(B) 10 proto	ons, 9 neutro	ons, and 10 elec	trons		
	(C) 9 proto	ns, 10 neutr	ons, and 9 elect	rons		
	(D) 9 proto	ns, 9 neutro	ns, and 9 electro	ons		
	(E) 19 proto	ons, 10 neut	rons, and 19 ele	ctrons		
3.	All the followin	g have 36 ele	extrons except			
	(A) ⁸⁷ Sr ²⁺ (Z	=38)	(B) ⁷⁹ Se ²⁻ (Z=34)	(C)	⁸⁵ Rb+ (Z=37)	
	(D) ⁸⁴ Kr ²⁺ (Z	2=36)	(E) ⁸⁰ Br (Z=35)			
4.	Which of the fo	ollowing is	an alkali metal?			
	(A) Ca	(B) Sc	(C) Be	(D) K	(E) Ba	
5.	Which of the fol	lowing elem	ents is most likely	y to form a ca	tion?	
	(A) Be	(B) P	(C) S	(D) N	(E) I	
6.	All of the follow	ving are heter	rogeneous mixtur	es except		
	(A) milk	(B)) a rock	(C) Vineg	ar	
	(D) yogurt	(E) a precipitate ir	water		
7.	An example of a (A) The reac (B) The reac (C) The dens (D) The ener (E) The burn	n physical pro- tion of rubid tion of caesi sity of boron rgy content o ning of sulph	operty is ium with water to um with oxygen t f liquid sodium ur to form sulphu	o form rubidiu to form caesiu r dioxide.	um hydroxide um superoxide	
8.	A solution of in	con(III) chlo	rate contains th	e ions		
	(A) Fe ³⁺ and	l ClO4 ⁻	(B) Fe ³⁺ and	ClO	(C) Fe³+ aı	nd ClO3
	(D) Fe ³⁺ and	l ClO2 ⁻	(E) Fe ²⁺ and	ClO4 ⁻		
9.	Which of the fol	lowing is the	phosphide ion?			
	(A) PO ₃ 3-	(B) PO4 ³⁻	(C) I	^{23.} (D)	(E)	P-
			. 2		-	

,

	10. The formula for sulphurous acid is (A) H ₂ SO ₃ (B) H ₃ PO ₃ (C) H ₂ SO ₄ (D) HSO (E) H ₂ S										
	11. Which of the following is boron nitride? (A) BN (B) B_2N (C) B_3N_2 (D) BC (E) B_2N_3										
	 12. Which of the following is calcium phosphate? (A) Ca₃(PO₃)₂ (B) Ca₃(PO₄)₂ (C) Ca₃PO₄ (D) CaPO₄ (E) Ca₂PO₄ 										
	13. A bottle of cola purchased in Europe gave the volume as 50 cL. What is the volume in m12										
	(A) 0.005 mL (B) $5 \ 000 \text{ mL}$ (C) 500 mL (D) 0.05 mL (E) 50 mL										
	 14. Chlorine has two naturally occurring isotopes; Cl-35 and Cl-37, with a natural abundance of 75.77 % and 24.23 %, respectively. The mass of an atom of Cl-35 is 5.807 x10⁻²³ g and that of Cl-37 is 6.139 x10⁻²³ g. What is the average molar mass of Chlorine? (A) 36.97 g/mol (B) 35.45 g/mol (C) 36.48 g/mol 										
n F	(D) 35.97 g/mol (E) 34.97 g/mol										
	15. How many moles of nitrogen are contained in 10.62 g of nitrogen gas, N ₂ ? (A) 1.319 mol (B) 148.8 mol (C) 0.3790 mol (D) 2.638 mol (E) 0.7580 mol										
	16. When aqueous solutions of cadmium nitrate and sodium sulphide are mixed, what are the "spectator ions'?										
	(A) S^{2-} and $NO_{3^{-}}$ (B) Cd^{2+} and S^{2-} (C) Cd^{2+} and $NO_{3^{-}}$ (D) Na^{+} and $NO_{3^{-}}$ (E) Na^{+} and S^{2-}										
l :	 17. Which of the following is soluble in water? (A) lead(II) sulphate (B) Mercury(I) chloride (C) lead(II) iodide (D) barium carbonate (E) mercury(I) nitrate 										
	 18. What type of reagent is required to convert NO₂⁻ to HNO₂? (A) acid (B) base (C) reducing agent (D) oxidizing agent (E) neutralization reagent 										
	 19. Which of the following oxides gives a basic solution when dissolved in water? (A)selenium trioxide (B) dinitrogen pentoxide (C) calcium oxide (D) sulphur dioxide (E) carbon dioxide 										
	20. What is the oxidation number of chlorine in HOCl? (A) +1 (B) -1 (C) +2 (D) +3 (E) 0										
	21. When aluminium metal is dissolved in perchloric acid, aluminium(III) percholrate and hydrogen gas are formed. In the balanced equation for the reaction, what is the coefficient of hydrogen gas?										
	(A) 3 (B) 2 (C) 1 (D) 4 (E) 5										
	3										

/

v

22. The following equation is unbalanced

$F_2 + H_2C$	$\rightarrow O_3 + HF$			
In the balance	d equation, the	coefficient of	HF is	
(A) 6	(B) 3	(C) 2	(D) 4	(E) 8

23. Which of the following pairs of solutions will give a precipitate when mixed?

(A) AgNO₃(aq) and LiClO₄(aq) (C) $K_2SO_4(aq)$ and Cu(NO₃)₂

(E) Ca(CH₃COO)₂(aq) and NH₄Cl(aq)

(B) Pb(NO₃)₂(aq) and KI(aq)
(D) NaCH₃COO(aq) and CaCl₂(aq)

24. Consider the following reaction:

 $Cd(s) + 2 \operatorname{AgCl}(s) \rightarrow Cd^{2+}(aq) + 2 \operatorname{Ag}(s) + 2Cl^{-}(aq)$

In this reaction

(A)The oxidizing agent is Cd(s)

(B) The reducing agent is AgCl(s)

(C)No electrons are transferred since the oxidation number of Cl is unchanged

(D) Electrons are transferred from Ag in Agcl(s) to Cd(s)

(E) Electrons are transferred from Cd(s) to Ag in AgCl(s)

25. Calculate the wavelength of blue light of frequency 6.40 x 10¹⁴ Hz.
(A) 468 nm
(B) 311 nm
(C) 214 nm
(D) 640 nm
(E) 936 nm

26. Calculate the energy per photon of microwaves of frequency 3.00×0^{11} Hz. (A) 2.21×10^{45} J (B) 1.99×10^{22} J (C) 4.52×10^{44} J

(D) 5.97 x 10⁻¹⁴ J (E) 120 J

27. An electron in a hydrogen atom has the quantum numbers n = 4, l = 1, $m_l = 0$. In what type of orbital is the electron located

(A) 3p (B) 3d (C) 4s (D) 4d (E) 4p

- 28. How many orbitals are there in a shell with n = 3? (A) 9 (B) 18 (C) 4 (D) 8 (E) 3
- 29. Which subshell can hold the greatest number of electrons? (A) 6p (B) 3d (C) 4f (D) 4d (E) 5d

30. What is the ground state electron configuration of an aluminium atom? (A) $[Ne]3s^23p^1$ (B) $[Ne]3s^13p^2$ (C) $[Ne]3s^2$ (D) $[Ne]3s^23p^2$ (E) $[Ne]3s^23p^3$

31. How many unpaired electrons are there in the ground state of Cu⁺? (A) 0 (B) 1 (C) 6 (D) 3 (E) 5

32. What is the electron configuration of Ni⁴⁺? (A) [Ar] $3d^{6}4s^{2}$ (B) [Ar] $3d^{6}$ (C) [Ar] $3d^{8}$ (D) [Ar] $3d^{6}4s^{1}$ (E) [Ar] $3d^{4}4s^{2}$

4 [·]

33. \	Which of the fol (A) oxygen	lowing would (B) sulpł	have the sm our (C	allest radius? C) carbon) (D) sili	con	(E) lithium
34. \	Which of the fol	lowing has the	highest firs	t ionization e	energy?		-
	(A) P	(B) Mg	(C) S	(D) Al	(E	i) Si	
35.7	The lattice entha	lpy of potassit	ım iodide is	the energy cl	hange for t	the react	tion
	(A) KI(s) \rightarrow	K(g) + I(g)	(H	B) KI(s) \rightarrow K	⁺ (g) + Γ(g)	
	(C) $K(g) +$	$I(g) \rightarrow KI(s)$	(I)) K(s) + ½	$I_2(s) \rightarrow K$	CI(s)	
	(E) KI(s) \rightarrow	$K(g) + \frac{1}{2} \log(g)$)	, , ,			
36. I 1	How many lone H ₂ O?	pairs of electro	ons does the	oxygen atom	1 possess i	n the Le	wis structure of
	(A) 2	(B) 4	(C) 3	(D) 1	_ (E	.) O	
37	Which of the fo	llowing is mos	t volatile?				•,
57.	(A) CBr ₃ H	(B) CCl ₄	(C) CC	₃H (D)	CBr4	(E) CI	Br2H2
38. 1	Which of the fol	lowing has the	highest boi	ing point?			
	(A) n-butane	, CH ₃ (CH ₂) ₂ C	H ₃ (H	B) n-hexane,	CH ₃ (CH ₂)	4CH3	
	(C) n-heptan	e, CH ₃ (CH ₂) ₅ C	CH3 (I)) n-propane,	CH ₃ CH ₂	CH3	
	(D) n-pentan	e, $CH_3(CH_2)_3C$	CH3				
39.]	The boiling poin	t of HF is high	er than that	of HCl due to	0		
	(A) ion-dipo	le forces	(B) Hydr	ogen bonding	g ((C) Lon	don forces
	(D) dipole-di	pole forces	(E) ion-io	on forces.			
40. I	For which of the	following sub	stances wou	ld hydrogen	bonding b	e most i	mportant?
	$(A) NH_3$	(B) HI	(C) CH ₄	(D) H ₂	(E)GeH4	•

.

• 1

.

Please insert your answer sheet inside the answer book used for section B.

.

SECTION B (60 Marks)

There are four questions in this section. Each question is worth 20 marks. Answer any three questions. In all calculations answers must have the correct number of significant figures and units.

Question 1 (20 marks)

- (a) You know that an unlabelled bottle contains a solution of one of the following: AgNO₃, CaCl₂ or Al₂(SO₄)₃. A friend suggests you test a portion of each solution with Ba(NO₃)₂ and then with NaCl solutions. Explain, with supporting equations, how these two tests together would be sufficient to determine which salt is present in the solution. [6]
- (b) Which of the following are redox reactions? For those that are, indicate which element is oxidized and which is reduced. For those that are not indicate whether they are precipitation or acid-base reactions.
 - (i) $Cu(OH)_2(s) + 2 HNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 H_2O(l)$
 - (ii) $\operatorname{Fe_2O_3(s)} + 3 \operatorname{CO}(g) \rightarrow 2 \operatorname{Fe}(s) + 3 \operatorname{CO}_2(g)$
 - (iii) $Sr(NO_3)_2(aq) + H_2SO_4(aq) \rightarrow SrSO_4(s) + 2 HNO_3(aq)$
 - (iv) $Zn(s) + 10H^{+}(aq) + 2NO_{3}(aq) \rightarrow 4Zn^{2+}(aq) + N_{2}O(g) + 5H_{2}O(l)$ [6]
- (c) A sample of 1.50 g of lead(II) nitrate is mixed with 125 mL of 0.100 M sodium sulphate solution.
 - (i) Write the chemical equation for the reaction that occurs.
 - (ii) Which is the limiting reactant in the reaction?
 - (iii) What is the concentration of sulphate ions that remain in solution after the reaction is complete? [8]

Question 2 (20 marks)

- (a) Metal chlorides, such as praseodymium chloride, $PrCl_3$, can be prepared by heating praseodymium oxide, Pr_2O_3 , with ammonium chloride to yield the chloride, $PrCl_3$, plus water and ammonia.
 - (i) Write a balanced equation for the reaction.
 - (ii) If $50.0 \text{ g } Pr_2O_3$ is used, what mass of $PrCl_3$ will be produced?

[8]

(b) Antimony reacts with oxygen as follows

 $4 \operatorname{Sb}(s) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{Sb}_2\operatorname{O}_3(s)$

- (i) What type of reaction is this?
- (ii) What is the limiting reactant when $5.0 \mod Sb(s)$ and $5.0 \mod O_2(g)$ react?
- (iii) How many moles of the excess reactant remain if reaction is complete?
- (iv) How many moles of product can be formed?
- (v) If $2.0 \text{ mol } \text{Sb}_2\text{O}_3$ forms, what is the percentage yield? [12]

Question 3 (20 marks)

- (a) Draw Lewis structures of the following species. Identify those that do not obey the octet rule and explain why they do not. (i) SO₃²⁻ (ii) AlH₃ (iii) SbF₅ [9]
 (b) Give the VSEPR model shape of the species in (a) [6]
 (c) Indicate whether he species in (a) is polar or none polar [3]
- (d) Calculate the formal charge of the central atom in each the species in (a) [2]

Question 4 (20 marks)

- (a) Consider the compound $NiSO_4 \cdot 6H_2O$
 - (i) Name the compound
 - (ii) Calculate the molar mass of the compound
 - (iii) How many moles are there in 5.00 g of the compound?
 - (iv) How many oxygen atoms are present in one molecule of the compound?
 - (v) How many moles of hydrogen atoms are present in 4.2 x 10⁻³ mol of the compound? [8]
- (b) The molar mass of boron atoms in a sample of naturally occurring ore is 10.81 g/mol. The sample is known to consist of ¹⁰B (of mass 10.013 u) and ¹¹B (of mass 10.093 u). What are the abundances of the two isotopes? [6]
- (c) Name the following compounds
 - (i) $CuCl_2 \cdot 2H_2O$
 - (ii) CrPO₄
 - (iii) V₂O₅

[6]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	с	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = \hbar/2\pi$	1.054 57 X ₋ 10 ⁻³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m _e	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m,	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε.	$1.112 65 \times 10^{-10} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$
Vacuum permeability	μ	$4\pi X 10^{-7} J s^2 C^{-2} m^{-1}$
		$4\pi X 10^{-7} T^2 J^{-1} m^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi\epsilon_o \hbar/m_e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	⁻ 7.297 35 X 10 ⁻³
Rydberg constant	$R_{\star} = m_{e}e^{4}/8h^{3}c\epsilon_{o}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 joules (J) 1.602 2 X 10 ⁻¹⁹ J			1 erg 1 eV/n	nolecul	e	` = =	1 X 10 ^{.7} J 96 485 kJ mol ⁻¹			
Prefixes	f	p	n	µ	m -	c	d	k	M	G	
	femto	pico	nano	micro	milli	centi	deci	kilo	mega	giga	
	10 ⁻¹⁵	10 ⁻¹²	10 ⁻⁹	10 ⁻⁶	10 ⁻³	10 ⁻²	10 ⁻¹	10 ³	10 ⁶	10°	

. Y

• •

PERIODIC TABLE OF ELEMENTS

	GROUPS																		
•		1	2	3	4	5	6.	7	8	9	10	11	12	13	14	15	16	17	18
1	ERIODS	<u> </u>	117	IIIB	IVB	-VB	. VIB	VIIB	1	VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA .	νιιιλ
		1.008							•	•									4.003
	- 1	II																•	He
		1	,	-		•												1	2
		6.941	9.012									Atomi	c mass 🕂	- 10.811	12.011	14.007	15.999	18.998	20.180
	2	Li	Be			·						Syn	nbol —	B	C	N	0	F	-Ne
		3	4	· · · · ·						•		Atom	ic No. 🗌	5	6	7	8	9	.10
		22.990	24:305	1									•	26.982	28.086	30.974	32.06	35.453	39.948
	3	Na	Mg		TUANSITION EL EMENTS							· Al	Si ·	P	S	EI	Ar		
	ĩ	11	12											13	14	15	16	17	18
-	· · · · · · · · · · · · · · · · · · ·	39 098	40.078	44 956	47.88	50.942	51.00%	54 938	55 847	58 033	58.60 *	63 546	65 30	69 723	72.61	74 922	78.96	79 904	83.80
	1	K	Ca	Sc		V	Cr	Mn	Re	Co	Ni	Cu	7.1	Ga	Ge	Δ.	Se	Br	Kr
	ч	19	20	21	22	23	24	25	-26	27	28	29	30	31	32	33	34	35	36
		85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.94	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
	5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
		37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
		132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
	6	Cs	Ba	*La	Hf	Ta	W	Rc	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
		55	56	57	72	73	74	75	76	77	78	79	80	81	82	· 83	.84	85	86
	•	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)			• *					
	.7	Fr	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun		•	١					
1		87	88	89	104	105	106	107.	108	109	110								
				Laar:			·	·····				4							
					140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167-26	168.93	173.04	174.97	
	*L:	anthani	de Serie	S	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	.Ho	- Er	Tm	Yb	Lu	
			•		58 ·	59	60	61	62	63	64	. 65 _.	66 .	.:.67	68	69	70	71	
	**	Actinid	e Series		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
					Th	Pa	U	Np	Pu -	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
					90	91	92	93	94	95	96	97	98	99	100	101	102	ʻ <u>1</u> 03	•
							I	d		l				L			L	L.,	

() indicates the mass number of the isotope with the longest half-life.

UNIVERSITY OF SWAZILAND

C111 SECTION A ANSWER SHEET

STUDENT ID NUMBER:__

Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

1.	(A)	(B)	(C)	(D)	(E)		21.	(A)	(B)	(C)	(D)	(E)
2	(A)	(B)	(C)	(D)	(E)		22	(A)	(B)	(C)	(D)	(E)
3	(A)	(B)	(C)	(D)	(E)	· .	23	(A)	(B)	(C)	(D)	(E)
4	(A)	(B)	(C)	(D)	(E)		24	(A)	(B)	(C)	(D)	(E)
5	(A)	(B)	(C)	(D)	(E)		25	(A)	(B)	(C)	(D)	(E)
6	(A)	(B)	(C)	(D)	(E)		26	(A)	(B)	(C)	(D)	(E)
7	(A)	(B)	(C)	(D)	(E)		27	(A)	(B)	(C)	(D)	(E)
8	(A)	(B)	(C)	(D)	(E)		28	(A)	(B)	(C)	(D)	(E)
9	(A)	(B)	(C)	(D)	(E)		29	(A)	(B)	(C)	(D)	(E)
10	(A)	(B)	(C)	(D)	(E)		30	(A)	(B)	(C)	(D)	(E)
11	(A)	(B)	(C)	(D)	(E)		31	(A)	(B)	(C)	(D)	(E)
12	(A)	(B)	(C)	(D)	(E)		32	(A)	(B)	(C)	(D)	(E)
13	(A)	(B)	(C)	(D)	(E)		33	(A)	(B)	(C)	(D)	(E)
14	(A)	(B)	(C)	(D)	(E)		34	(A)	(B)	(C)	(D)	(E)
15	·(A)	(B)	(C)	(D)	(E)		.35	(A)	(B)	(C)	(D)	(E)
16	(A)	(B)	(C)	(D)	(E)		36	(A)	(B)	(C)	(D)	(E)
17	(A)	(B)	(C)	(D)	(E)		37	(A)	(B)	(C)	(D)	(E)
18	(A)	(B)	(C)	(D)	(E)		38	(A)	(B)	(C)	(D)	(E)
19	(A)	(B)	(C)	(D)	(E)		39	(A)	(B)	(C)	(D)	(E)
20	(A)	(B)	(C)	(D)	(E)		40	(A)	(B)	(C)	(D)	(E)