UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2011/12

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I

COURSE NUMBER: C111

TIME:

4

,ŧ

THREE (3) HOURS

INSTRUCTIONS:

- (i) Answer all questions in section A (total 40 marks)
- (ii) Answer any 3 questions in section B (Each question is 20 marks)

Non-programmable electronic calculators may be used.

A data sheet, a periodic table and answer sheet for section A are attached

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR.

SECTION A (40 Marks)

This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all 40 questions.

- 1. What is the chemical symbol of iron? (A) I (B) Fe (C) Ir (D) In (E) F
- 2. An isotope of the element uranium has a mass number of 235 and an atomic number of 92. The number of electrons, protons and neutrons, respectively in a neutral atom of this isotope is

(A) 92, 92, and 235	(B) 92, 143, and 92	(C) 92, 92, and 143
(D) 92, 93, 142	(E) 143, 143, and 235	

- 3. Which of the following has 17 protons, 18 neutrons, and 18 electrons?

 (A) ³²S²⁻ (Z=16)
 (B) ⁴⁰Ar (Z=18)
 (C) ²⁸Si (Z=14)

 (D) ³⁵Cl⁻ (Z=17)
 (E) ⁴¹P³⁻ (Z=15)
- 4. Which of the following is an alkaline earth metal?
 (A)V
 (B) Cs
 (C) Rb
 (D) Y
 (E) Ba
- 5. Which of the following elements is most likely to form an anion? (A) Ba (B) P (C) V (D) Rb (E) Zn

6. A homogeneous mixture can be described as

- (A) One prepared by shaking flour with water
- (B) A substance like a rock
- (C) One in which the composition is the same throughout the sample
- (D) One which is a patchwork of aggregates of different substances
- (E) A solution like milk

7. An example of a chemical property is

- (A) Chlorine melts at -101 °C.
- (B) Chlorine requires energy to boil
- (C) Chlorine burns in hydrogen to form hydrogen chloride
- (D) Chlorine liberates energy when it freezes
- (E) Chlorine is green-yellow in colour.

8. A solution of nickel(II) chloride contains the ions

(A) Ni ²⁺ and ClO ⁻	(B) 2Ni ⁺ and 2Cl ⁻	(C) Ni ²⁺ and Cl ⁻
(D) NiO ²⁺ and Cl ⁻	(E) Ni ⁴⁺ and Cl ⁻	

9. The name of CIO⁻ is the(A) hypochlorite ion(D) chlorine oxide ion	(B) chloric ion (E) chlorite ion	(C) perchlorate ion
10. The name of the parent acid o (A) chlorous acid (D) hypochlorous acid	(B) hydrochloric acid	(C) chloric acid
11. The name of the compound C (A) cobalt(III) oxide (D) cobalt(III) trioxide	(B) cobalt(II) oxide	(C) dicobalt trioxide
12. The formula of phosphorus p (A) PCl ₅ (B) PCl ₄		(E) P_2Cl_5
13. Which of the following is long (A) 2.0 nm(B) 20 (D) 2.0 $\times 10^{-4}$ m(E) 2.0		dm
 14. Gallium has two naturally oc abundance of 60.20% and 39.8 68.9256 g/mol and that of Ga- of gallium? (A) 69.93 g/mol (D) 70.00 g/mol 	80%, respectively. The mola	ar mass of Ga-69 is
15. If the molar mass of Ni is 58.7 (A) 177.4 g (B) 88.70 g	•	ns 3.022 mol Ni? 1.47 g (E) 19.43 g
 16. When aqueous solutions of b what are the "spectator ions?? (A) NH⁴⁺ and NO³⁻ (D) SO⁴²⁻ and NO³⁻ 		um sulphate are mixed, (C) Ba²+ and NO3 ⁻
17. Which of the following is solu (A) lead(II) chloride (D) lead(II) carbonate	(B) lead(II) sulphide	(C) lead(II) acetate
 18. What type of reagent is required (A) acid (B) base (E) neutralization reagent 	to convert SO ₃ ²⁻ to HSO ₃ ⁻ ? (C) reducing agent (D) or	kidizing agent

-

19. Which of the following oxides gives an acidic solution when dissolved in water?

3

20. What is the oxidation number of chromium in Na ₂ CrO ₄ ? (A) +6 (B) +4 (C) +7 (D) +3 (E) 0 21. Calcium reacts with water to form calcium hydroxide and hydrogen. In balanced equation for this reaction, what is the coefficient of hydrogen? (A) 1 (B) 2 (C) 3 (D) 5 (E) ^{1/2} 22. The following equation is unbalanced: CaH ₂ + H ₂ O \rightarrow Ca(OH) ₂ + H ₂ In the balanced equation, the coefficient of H ₂ is (A) 1 (B) 2 (C) 3 (D) 4 (E) 5 23. Which of the following pairs of solutions will give a precipitate when min (A) AgNOs(aq) and NaCHsCOO(aq) (B) Hg(NOs) ₂ and NaCl(a (C) NHaCl(aq) and Ca(CHsCOO) ₂ (aq) (D) NazCOs(aq) and Ca(C (E) NasSOs(aq) and Ca(CHsCOO) ₂ (aq) (D) NazCOs(aq) and Ca(C (E) NasSOs(aq) and CuCl ₂ (aq) \rightarrow 2 Fe ²⁺ (aq) + HgsCl ₂ (s) In this reaction (A) Hg(I) is reduced (B) Fe ³⁺ (aq) is oxidized (C)Hg(I) is oxid (D) Fe ³⁺ (aq) is the reducing agent (E) Hg(I) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10 ¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0 ¹⁵ F (A) 2.21 x 10 ⁻⁴⁹ J (B) 1.99 x 10 ⁻¹⁸ J (C) 4.52 x 10 ⁴⁴ J (D) 5.97 x 10 ⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m _l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of mu? (A) 0 (B) +1 (C)+6 (D) -1 (E) +5		$(A)P_4O_{10}$	I	(B) CaO	(C) Na_2O	(D) SrO	(E) K ₂ O
balanced equation for this reaction, what is the coefficient of hydrogen? (A) 1 (B) 2 (C) 3 (D) 5 (E) ½ 22. The following equation is unbalanced: CaH ₂ + H ₂ O \rightarrow Ca(OH) ₂ + H ₂ In the balanced equation, the coefficient of H ₂ is (A) 1 (B) 2 (C) 3 (D) 4 (E) 5 23. Which of the following pairs of solutions will give a precipitate when mix (A) AgNO ₃ (aq) and NaCH ₃ COO(aq) (B) Hg(NO ₃) ₂ and NaCl(a (C) NH ₄ Cl(aq) and Ca(CH ₃ COO) ₂ (aq) (D) Na ₂ CO ₃ (aq) and Ca(C (E) Na ₂ SO ₄ (aq) and CuCl ₂ (aq) 24. Consider the following reaction: 2 Fe ^{3*} (aq) + 2 Hg(l) + 2Cl [*] (aq) \rightarrow 2 Fe ^{2*} (aq) + Hg ₂ Cl ₂ (s) In this reaction (A) Hg(l) is reduced (B) Fe ^{3*} (aq) is oxidized (C)Hg(l) is oxid (D) Fe ^{3*} (aq) is the reducing agent (E) Hg(l) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10 ¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0 ¹⁵ H (A) 2.21 x 10 ^{4*} J (B) 1.99 x 10 ⁻¹⁸ J (C) 4.52 x 10 ⁴⁸ J (D) 5.97 x 10 ⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m _{<i>l</i>} = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m.?	20. W						0
(A) 1 (B) 2 (C) 3 (D) 5 (E) ^{1/2} 22. The following equation is unbalanced: CaH ₂ + H ₂ O \rightarrow Ca(OH) ₂ + H ₂ In the balanced equation, the coefficient of H ₂ is (A) 1 (B) 2 (C) 3 (D) 4 (E) 5 23. Which of the following pairs of solutions will give a precipitate when min (A) AgNO ₃ (aq) and NaCH ₃ COO(aq) (B) Hg(NO ₃) ₂ and NaCl(a (C) NH ₄ Cl(aq) and Ca(CH ₃ COO) ₂ (aq) (D) Na ₂ CO ₃ (aq) and Ca(C (E) Na ₂ SO ₄ (aq) and Cu(Cl ₂ (aq)) 24. Consider the following reaction: 2 Fe ³⁺ (aq) + 2 Hg(l) + 2Cl ⁻ (aq) \rightarrow 2 Fe ²⁺ (aq) + Hg ₂ Cl ₂ (s) In this reaction (A) Hg(l) is reduced (B) Fe ³⁺ (aq) is oxidized (C)Hg(l) is oxid (D) Fe ³⁺ (aq) is the reducing agent (E) Hg(l) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10 ¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0 ¹⁵ H (A) 2.21 x 10 ⁴⁹ J (B) 1.99 x 10 ⁻¹⁸ J (C) 4.52 x 10 ⁴⁸ J (D) 5.97 x 10 ⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m _l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m?					-	•	•
CaH ₂ + H ₂ O → Ca(OH) ₂ + H ₂ In the balanced equation, the coefficient of H ₂ is (A) 1 (B) 2 (C) 3 (D) 4 (E) 5 23. Which of the following pairs of solutions will give a precipitate when min (A) AgNO ₃ (aq) and NaCH ₃ COO(aq) (B) Hg(NO ₃) ₂ and NaCl(a (C) NH ₄ Cl(aq) and Ca(CH ₃ COO) ₂ (aq) (D) Na ₂ CO ₃ (aq) and Ca(C (E) Na ₂ SO ₄ (aq) and CuCL ₂ (aq) 24. Consider the following reaction: 2 Fe ³⁺ (aq) + 2 Hg(1) + 2Cl ² (aq) → 2 Fe ²⁺ (aq) + Hg ₂ Cl ₂ (s) In this reaction (A) Hg(1) is reduced (B) Fe ³⁺ (aq) is oxidized (C)Hg(1) is oxid (D) Fe ³⁺ (aq) is the reducing agent (E) Hg(1) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10 ¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0 ¹⁵ H (A) 2.21 x 10 ⁴⁹ J (B) 1.99 x 10 ⁻¹⁸ J (C) 4.52 x 10 ⁴⁸ J (D) 5.97 x 10 ⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m _{<i>l</i>} = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of mv?	Da	-					
In the balanced equation, the coefficient of H ₂ is (A) 1 (B) 2 (C) 3 (D) 4 (E) 5 23. Which of the following pairs of solutions will give a precipitate when mix (A) AgNO ₃ (aq) and NaCH ₃ COO(aq) (B) Hg(NO ₃) ₂ and NaCl(a (C) NH ₄ Cl(aq) and Ca(CH ₃ COO) ₂ (aq) (D) Na ₂ CO ₃ (aq) and Ca(C (E) Na ₂ SO ₄ (aq) and CuCl ₂ (aq) 24. Consider the following reaction: 2 Fe ³⁺ (aq) + 2 Hg(l) + 2Cl ⁻ (aq) \rightarrow 2 Fe ²⁺ (aq) + Hg ₂ Cl ₂ (s) In this reaction (A) Hg(l) is reduced (B) Fe ³⁺ (aq) is oxidized (C)Hg(l) is oxid (D) Fe ³⁺ (aq) is the reducing agent (E) Hg(l) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10 ¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0 ¹⁵ H (A) 2.21 x 10 ⁻⁴⁹ J (B) 1.99 x 10 ⁻¹⁸ J (C) 4.52 x 10 ⁴⁸ J (D) 5.97 x 10 ⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m _l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m.?	22 . T	he following	g equation	is unbalance	d:		
(A) 1 (B) 2 (C) 3 (D) 4 (E) 5 23. Which of the following pairs of solutions will give a precipitate when mix (A) AgNO ₃ (aq) and NaCH ₃ COO(aq) (B) Hg(NO ₃)2 and NaCl(a (C) NH ₄ Cl(aq) and Ca(CH ₃ COO)2(aq) (D) Na ₂ CO ₃ (aq) and Ca(C (E) Na ₂ SO ₄ (aq) and CuCl ₂ (aq) 24. Consider the following reaction: 2 Fe ³⁺ (aq) + 2 Hg(l) + 2Cl ⁻ (aq) \rightarrow 2 Fe ²⁺ (aq) + Hg ₂ Cl ₂ (s) In this reaction (A) Hg(l) is reduced (B) Fe ³⁺ (aq) is oxidized (C)Hg(l) is oxid (D) Fe ³⁺ (aq) is the reducing agent (E) Hg(l) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10 ¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0 ¹⁵ H (A) 2.21 x 10 ⁴⁹ J (B) 1.99 x 10 ⁻¹⁸ J (C) 4.52 x 10 ⁴⁸ J (D) 5.97 x 10 ⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m _l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m.?		CaH ₂ + H	$I_2O \rightarrow Ca$	(OH)2 + H2			
 23. Which of the following pairs of solutions will give a precipitate when mix (A) AgNO₃(aq) and NaCH₃COO(aq) (B) Hg(NO₃)₂ and NaCl(a (C) NH₄Cl(aq) and Ca(CH₃COO)₂(aq) (D) Na₂CO₃(aq) and Ca(C (E) Na₂SO₄(aq) and CuCl₂(aq) 24. Consider the following reaction: 2 Fe³⁺(aq) + 2 Hg(l) + 2Cl⁻(aq) → 2 Fe²⁺(aq) + Hg₂Cl₂(s) In this reaction (A) Hg(l) is reduced (B) Fe³⁺(aq) is oxidized (C)Hg(l) is oxid (D) Fe³⁺(aq) is the reducing agent (E) Hg(l) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0¹⁵ H (A) 2.21 x 10⁴⁹ J (B) 1.99 x 10⁻¹⁸ J (C) 4.52 x 10⁴⁸ J (D) 5.97 x 10⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m/= 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m.? 	In	the balance	-				
 (A) AgNO3(aq) and NaCH3COO(aq) (B) Hg(NO3)2 and NaCl(a (C) NH4Cl(aq) and Ca(CH3COO)2(aq) (D) Na2CO3(aq) and Ca(C (E) Na2SO4(aq) and CuCl2(aq) 24. Consider the following reaction: 2 Fe³⁺(aq) + 2 Hg(l) + 2Cl⁻(aq) → 2 Fe²⁺(aq) + Hg2Cl2(s) In this reaction (A) Hg(l) is reduced (B) Fe³⁺(aq) is oxidized (C)Hg(l) is oxidi (D) Fe³⁺(aq) is the reducing agent (E) Hg(l) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0¹⁵ H (A) 2.21 x 10⁻⁴⁹ J (B) 1.99 x 10⁻¹⁸ J (C) 4.52 x 10⁴⁸ J (D) 5.97 x 10⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m_l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m/2 		(A) 1	(B) 2	(C) 3	(D) 4	(E)	5
 (A) AgNO3(aq) and NaCH3COO(aq) (B) Hg(NO3)2 and NaCl(a (C) NH4Cl(aq) and Ca(CH3COO)2(aq) (D) Na2CO3(aq) and Ca(C (E) Na2SO4(aq) and CuCl2(aq) 24. Consider the following reaction: 2 Fe³⁺(aq) + 2 Hg(l) + 2Cl⁻(aq) → 2 Fe²⁺(aq) + Hg2Cl2(s) In this reaction (A) Hg(l) is reduced (B) Fe³⁺(aq) is oxidized (C)Hg(l) is oxidi (D) Fe³⁺(aq) is the reducing agent (E) Hg(l) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0¹⁵ H (A) 2.21 x 10⁻⁴⁹ J (B) 1.99 x 10⁻¹⁸ J (C) 4.52 x 10⁴⁸ J (D) 5.97 x 10⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m_l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m/2 	23. W	/hich of the	following	pairs of solut	ions will giv	e a precipita	te when mi
 (C) NH₄Cl(aq) and Ca(CH₃COO)₂(aq) (D) Na₂CO₃(aq) and Ca(C (E) Na₂SO₄(aq) and CuCl₂(aq) 24. Consider the following reaction: 2 Fe³*(aq) + 2 Hg(l) + 2Cl*(aq) → 2 Fe²*(aq) + Hg₂Cl₂(s) In this reaction (A) Hg(l) is reduced (B) Fe³*(aq) is oxidized (C)Hg(l) is oxidized (D) Fe³*(aq) is the reducing agent (E) Hg(l) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0¹⁵ H (A) 2.21 x 10⁴⁹ J (B) 1.99 x 10⁻¹⁸ J (C) 4.52 x 10⁴⁸ J (D) 5.97 x 10⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, l = 3, m_l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with l = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m_l?			•		•		
(E) Na ₂ SO ₄ (aq) and CuCl ₂ (aq) 24. Consider the following reaction: $2 \text{ Fe}^{3+}(aq) + 2 \text{ Hg}(l) + 2\text{ Cl}^{-}(aq) \rightarrow 2 \text{ Fe}^{2+}(aq) + \text{Hg}_2\text{Cl}_2(s)$ In this reaction (A) Hg(l) is reduced (B) Fe ³⁺ (aq) is oxidized (C)Hg(l) is oxid (D) Fe ³⁺ (aq) is the reducing agent (E) Hg(l) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10 ¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0 ¹⁵ H (A) 2.21 x 10 ⁴⁹ J (B) 1.99 x 10 ⁻¹⁸ J (C) 4.52 x10 ⁴⁸ J (D) 5.97 x 10 ⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m _l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m/?		• • •	-		-	•	
2 Fe ³⁺ (aq) + 2 Hg(l) + 2Cl ⁻ (aq) → 2 Fe ²⁺ (aq) + Hg ₂ Cl ₂ (s) In this reaction (A) Hg(l) is reduced (B) Fe ³⁺ (aq) is oxidized (C)Hg(l) is oxid (D) Fe ³⁺ (aq) is the reducing agent (E) Hg(l) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10 ¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0 ¹⁵ H (A) 2.21 x 10 ⁴⁹ J (B) 1.99 x 10 ⁻¹⁸ J (C) 4.52 x 10 ⁴⁸ J (D) 5.97 x 10 ⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m _l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m _l ?					· • • ·		~ ``
2 Fe ³⁺ (aq) + 2 Hg(l) + 2Cl ⁻ (aq) → 2 Fe ²⁺ (aq) + Hg ₂ Cl ₂ (s) In this reaction (A) Hg(l) is reduced (B) Fe ³⁺ (aq) is oxidized (C)Hg(l) is oxid (D) Fe ³⁺ (aq) is the reducing agent (E) Hg(l) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10 ¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0 ¹⁵ H (A) 2.21 x 10 ⁴⁹ J (B) 1.99 x 10 ⁻¹⁸ J (C) 4.52 x 10 ⁴⁸ J (D) 5.97 x 10 ⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m _l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m _l ?	24 C	onsider the	following	reaction			
 In this reaction (A) Hg(l) is reduced (B) Fe³⁺(aq) is oxidized (C)Hg(l) is oxid (D) Fe³⁺(aq) is the reducing agent (E) Hg(l) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0¹⁵ H (A) 2.21 x 10⁴⁹ J (B) 1.99 x 10⁻¹⁸ J (C) 4.52 x10⁴⁸ J (D) 5.97 x 10⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m_l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m/? 	27. U		•		$2 E_{0}^{2+}(2a)$	H_{α}	
(A) Hg(l) is reduced (B) $Fe^{3+}(aq)$ is oxidized (C)Hg(l) is oxid (D) $Fe^{3+}(aq)$ is the reducing agent (E) Hg(l) is the oxidizing agent 25. Calculate the wavelength of yellow light of frequency 5.20×10^{14} Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00×0^{15} H (A) 2.21×10^{-49} J (B) 1.99×10^{-18} J (C) 4.52×10^{48} J (D) 5.97×10^{-10} J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers $n = 4$, $l = 3$, $m_l = 0$. In type of orbital is the electron located (A) $4p$ (B) $4f$ (C) $4s$ (D) $4d$ (E) $3d$ 28. How many orbitals are there in a shell with $l = 2?$ (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m?	In thi		· ~ 118(1) .	' ∠CI (aq) →	∠ 1 [.] e ⁻ (aq) ⁴	1182012(8)	
 (D) Fe³⁺(aq) is the reducing agent (E) Hg(l) is the oxidizing age 25. Calculate the wavelength of yellow light of frequency 5.20 x 10¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0¹⁵ H (A) 2.21 x 10⁴⁹ J (B) 1.99 x 10⁻¹⁸ J (C) 4.52 x10⁴⁸ J (D) 5.97 x 10⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, l = 3, m_l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with l = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m/? 	шішы		is r educed	(B) Fe ³	ihixo ai (ne)	zed (C)	Ho(l) is oxid
 25. Calculate the wavelength of yellow light of frequency 5.20 x 10¹⁴ Hz. (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0¹⁵ H (A) 2.21 x 10⁴⁹ J (B) 1.99 x 10⁻¹⁸ J (C) 4.52 x10⁴⁸ J (D) 5.97 x 10⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, <i>l</i> = 3, m_l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with <i>l</i> = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m? 		•					0
 (A) 520 nm (B) 1150 nm (C) 173 nm (D) 382 nm (E) 576 nm 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0¹⁵ H (A) 2.21 x 10⁴⁹ J (B) 1.99 x 10⁻¹⁸ J (C) 4.52 x10⁴⁸ J (D) 5.97 x 10⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, l = 3, m_l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with l = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of mi? 			Ľ	00			00
 26. Calculate the energy per photon of ultraviolet radiation of frequency 3.00 x 0¹⁵ H (A) 2.21 x 10⁴⁹ J (B) 1.99 x 10⁻¹⁸ J (C) 4.52 x10⁴⁸ J (D) 5.97 x 10⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, l = 3, m_l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with l = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m/? 	25. Ca		-	•			
(A) 2.21×10^{49} J(B) 1.99×10^{-18} J(C) 4.52×10^{48} J(D) 5.97×10^{-10} J(E) 1200 27. An electron in a hydrogen atom has the quantum numbers $n = 4$, $l = 3$, $m_l = 0$. In type of orbital is the electron located (A) $4p$ (B) $4f$ (C) $4s$ (D) $4d$ (E) $3d$ 28. How many orbitals are there in a shell with $l = 2$? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of $m/2$		(A) 520 nn	n (B) 115	0 nm (C) 173	3 nm (D) 3	82 nm (E) 576 nm
(A) 2.21×10^{49} J(B) 1.99×10^{-18} J(C) 4.52×10^{48} J(D) 5.97×10^{-10} J(E) 1200 27. An electron in a hydrogen atom has the quantum numbers $n = 4$, $l = 3$, $m_l = 0$. In type of orbital is the electron located (A) $4p$ (B) $4f$ (C) $4s$ (D) $4d$ (E) $3d$ 28. How many orbitals are there in a shell with $l = 2$? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m.?	26 C	alculate the e	nerov ner n	hoton of ultray	violet radiation	of frequency	$v = 3.00 \times 0^{15} H$
 (D) 5.97 x 10⁻¹⁰ J (E) 1200 27. An electron in a hydrogen atom has the quantum numbers n = 4, l = 3, m_l = 0. In type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with l = 2? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m/? 	20.00						<i>J</i> .00 A 0 H
type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with $l = 2$? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m?		. ,	-	. ,	y (-)	,	
type of orbital is the electron located (A) 4p (B) 4f (C) 4s (D) 4d (E) 3d 28. How many orbitals are there in a shell with $l = 2$? (A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m.?	07 4	1 4	. 1 . 1	. 1 .1		4 7	2 0 1
(A) 4p(B) 4f(C) 4s(D) 4d(E) 3d28. How many orbitals are there in a shell with $l = 2$? (A) 5(B) 4(C) 7(D) 2(E) 129. For a 6p subshell, what is the most positive of m?					luantum numi	pers n = 4, l =	$3, m_l = 0. \ln 1$
(A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m?	• • •	-			(D) 4	d (E)	3d
(A) 5 (B) 4 (C) 7 (D) 2 (E) 1 29. For a 6p subshell, what is the most positive value of m?	70 11		itala ana tha	no in o choll ur	ith 1 - 79		
29. For a 6p subshell, what is the most positive value of m?	2 0 . H	•				(E)	1
• •		(A) 5	(D) 4	(C) /	(D) 2	(E)	1
(A) 0 (B) +1 (C)+6 (D) -1 (E) +5	29. Fo	or a 6p subsl	hell, what i	is the most po	ositive value	of mi?	
		(A) 0	(B) +1	(C)+6	(D) -1	(E)	+5
4							

14.

30. What is the ground state electron configuration of a bromine atom? (A) $[Ar]3d^{10}4s^{2}4p^{2}$ (B) $[Ar]3d^{10}4s^{2}4p^{6}$ (C) $[Ar]3d^{10}4s^{2}4p^{5}$ (D) $[Ar]3d^{10}4s^{2}4p^{3}$ (E) $[Ar]3d^{10}4s^{2}4p^{4}$
 31. What is the electron configuration of the Fe²⁺ ion? (A) [Ar]3d⁵4s² (B) [Ar]3d⁵ (C) [Ar]3d⁶ (D) [Ar]3d⁵4s¹ (E) [Ar]3d⁴4s²
 32. What is the electron configuration of the Se²⁻ ion? (A) [Kr]5s¹ (B) [Ar]3d¹⁰4s²4p⁴ (C) [Kr] [D] [Kr]5s² (E) [Ar]3d¹⁰4s²
 33. Which of the following would have the smallest radius? (A) Cl⁻¹ (B) S²⁻ (C) K⁺ (D) K (E) Ca²⁺
34. Which of the following represents the second ionization energy of the element E? (A) $E(s) \rightarrow E^{+}(g) + e^{-}(g)$ (B) $E(s) \rightarrow E^{2+}(g) + 2e^{-}(g)$ (C) $E^{+}(g) \rightarrow E^{2+}(g) + e^{-}(g)$ (D) $E(g) \rightarrow E^{+}(g) + e^{-}(g)$ (E) $E(g) \rightarrow E^{2+}(g) + 2e^{-}(g)$
35. The lattice enthalpy of lithium bromide is the energy change for the reaction (A) LiBr(s) \rightarrow Li(g) + ½Br ₂ (g) (B) LiBr(s) \rightarrow Li ⁺ (g) + Br ⁻ (g) (C) Li(g) + Br(g) \rightarrow LiBr(s) (D) Li(s) + ½Br ₂ (l) \rightarrow LiBr(s) (E) LiBr(s) \rightarrow Li(g) + Br(g)
 36. How many valence electrons are there in the sulphite ion, SO₃²? (A) 26 (B) 24 (C) 22 (D) 18 (E) 20
37. Which of the following has the highest boiling point?(A) I₂(B) Br₂(C) F₂(D) Cl₂(E) Ar
 38. Which of the following has the smallest standard molar enthalpy of vaporization? (A) CH₄ (B) H₂O (C) NH₃ (D) HF (E) SnH₄
39. The boiling point of O2 is higher than that of N2 due to (A) ion-dipole forces(B) Hydrogen bonding (C) London forces(D) dipole-dipole forces(E) ion-ion forces.
 40. Which of the following is likely to form hydrogen bonds in the pure stae? (A) CH₃CH₂OH (B) CH₃OCH₃ (C) CH₄ (D) CH₃C(O)CH₃ (E) (CH₃)₃N

Please insert your answer sheet inside the answer book used for section B.

5

SECTION B (60 Marks)

There are four questions in this section. Each question is worth 20 marks. Answer any three questions. In all calculations answers must have the correct number of significant figures and units.

<u>Ouestion 1 (20 marks)</u>

- (a) Separate samples of an unknown solution are treated with dilute solutions of HBr, H₂SO₄, and NaOH. A precipitate forms in all three cases. Which of the following cations could the solution contain: K⁺, Pb²⁺, Ba²⁺? Support your answer with appropriate equations.
 [4]
- (b) Which of the following solutions is most basic? 0.5 M NH₃; 0.1 M KOH; 0.1 M Ca(OH)₂? Explain [3]
- (c) A 3.455 g sample of a mixture was analysed for barium ion by adding a small excess of sulphuric acid to an aqueous solution of the sample. The resultant reaction produced a precipitate of Barium sulphate, which was collected by filtration, washed, dried and weighed. If 0.2815 g of the barium sulphate was obtained, what was the mass percentage of barium in the sample? [4]
- (d) The following redox reactions are important in the refining of certain elements.

- (i) Balance the above equations.
- (ii) Name the source compound or ore of the element (in boldface).
- (iii) What is the oxidation state of the element being extracted?

Question 2 (20 marks)

(a) Phenol (C_6H_5OH), often used as a disinfectant in stables and drains is a common water pollutant. It can be converted to less harmful oxalic acid ($H_2C_2O_4$) by reaction with ozone:

$$C_6H_5OH + 11 O_3 \rightarrow 3 H_2C_2O_4 + 11 O_2$$

- (i) What mass of ozone would be required to react with 125.0 g of phenol?
- (ii) What mass of oxalic acid would be produced?

[6]

[9]

(b) Cadmium hydroxide, used in storage battery electrodes, is prepared by precipitation from a solution containing cadmium chloride and potassium hydroxide:

 $CdCl_2(aq) + 2 KOH(aq) \rightarrow Cd(OH)_2(s) + 2 KCl(aq)$

What mass of cadmium hydroxide could be prepared from 125 mL of 0.250 M CdCl₂ mixed with 125 mL of 0.450 M KOH? [6]

(c) Oxygen difluoride can be prepared by bubbling gaseous fluorine into 0.5 M solution of NaOH:

 $2 F_2(g) + 2 \text{NaOH}(aq) \rightarrow OF_2(g) + 2 \text{NaF}(aq) + H_2O(l)$

Oxygen difluoride can be used to prepare compounds such as O_2AsF_6 , containing the dioxygen cation, O_2^+ , by the following reaction:

$$4 \text{ OF}_2 + 2 \text{ As}F_5 \rightarrow 2 \text{ O}_2 \text{As}F_6 + 3F_2$$

If 14.0 g F_2 is bubbled through 650 mL of 0.500 M NaOH to prepare OF_2 with a 78.0% yield, how many grams of O_2AsF_6 can be prepared? [8]

Question 3 (20 marks)

(a) Consider the ammonia, NH₃ molecule

- (i) The hydrogen and nitrogen atoms in ammonia are joined together by covalent bonds. What is meant by the term *covalent bond*?
- (ii) By referring to the formation of the ammonium ion from ammonia give the meaning of the term coordinate bond.
- (iii) Give the VSEPR model shape of the ammonium ion
- (iv) Name the major force of attraction which exists between molecules in liquid ammonia and explain how this type of force arises. [10]
- (b) Write the Lewis structure of ICl_3 and calculate the formal charge of iodine. [4]
- (c) (i) What is meant by the term polarizability?
 - (ii) Arrange the following atoms in order of increasing polarizability: O, S, Se, and Te.
 - (iii) Arrange the following molecules in order of increasing polarizability: CH₄, GeCl₄, SiCl₄, SiH₄, and GeBr₄.

- (a) a chemical reaction requires at least 0.683 mol of sulphur atoms to react with 0.683 mol of copper atoms.
 - (i) How many S atoms are required?
 - (ii) How many sulphur molecules, S₈, are necessary?
 - (iii) What mass of sulphur is needed for the reaction?
- (b) A chemist prepared an aqueous solution by mixing 2.50 g of ammonium phosphate trihydrate, (NH4)₃PO4 · 3H₂O, and 1.5 g of potassium phosphate, K₃PO4, with 500 g of water.
 - (i) Determine the number of moles of each compound that was measured?
 - (ii) How many moles of $PO_{4^{3}}$ ions are present in the solution?
 - (iii) Calculate the mass of phosphate ions present in the solution.
 - (iv) What is the total mass of water present I the solution?
- (c) Write the names of the following compounds
 - (i) $Cu(NO_3)_2 \cdot 6H_2O$
 - (ii) $NiF_2 \cdot 2H_2O$
 - (iii) NaHCO₃

[6]

[8]

[6]

General data and fundamental constants

۰.

Quantity	Symbol	Value
Speed of light	с	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = \hbar/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m,	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε ₀	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ	$4\pi X 10^{-7} J s^2 C^{-2} m^{-1}$
		$4\pi \ge 10^{-7} T^2 J^{-1} m^3$
Magneton		
Bohr	$\mu_{B} = e\hbar/2m_{e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_{e} = 4\pi\epsilon_{e}\hbar/m_{e}e^{2}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	⁻ 7.297 35 X 10 ⁻³
Rydberg constant	$R_{\star} = m_e e^4/8h^3 c\epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	- •	
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	Ğ	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

Prefixes f p n μ m · c d k M G femto pico nano micro milli centi deci kilo mega giga 10^{-15} 10^{-12} 10^{-9} 10^{-6} 10^{-3} 10^{-1} 10^3 10^6 10^9	1 cal = 1 eV =		joules (2 X 10		1 erg 1 eV/n	nolecul	e	` =	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹		
		femto	pico	nano	micro	milli	centi	deci	mega	G giga 10 ⁹	

PERIODIC TABLE OF ELEMENTS

	GROUPS																	
	1	2	3	4	5	6.	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	ΙΛ	11	IIIB	IVB	·VB	. VIB	VIIB		VIIIB		IB	IIB	HIA -	IVA	VA	VIA	VIIA .	VIIIA
1	1,008 11 1		_	· · ·													4.003 11c 2	
	6.941	9.012										c mass —)		12.011	14.007	15.999	18.998	20.180
2	Li	Be											B	C	N	0	F	-Ne
	3	- 4		• • • • • • • • • • • • • • • • • • • •	·						Atom	ic <u>No.</u>	5	6	7	8	9	. 10
	22.990	24:305	1										26.982	28.086	30.974	32.06	35.453	39.948
3	Na	Mg				TRAN	SITION	I ELEM	ENTS		•		AI	Si -	P	S	El	Ar
Ĩ	11	12					0						13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69 *	63.546	65.39 .	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V.	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
•	. 19	20	21	22	23	24	25	· 26	27	28	29	30	31	32	33	34	. 35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.94	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Τe	I	Xe
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	.79	80	81	82	83	·84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)			•					
7	Fr	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun								
	87	88	89	104	105	106	107.	108	109	110								
											•							
			i	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167-26	168.93	173.04	174.97	
*Lanthanide Series			S	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	,Ho	- Er	Ţm	Yb	Lu	
				58 -	-59	60	61	62	63	64.	. 65 _.	66	.67	68	69	70	71	
*	*Actinid	e Series		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
				Th	Pa	U	Np	Pu ·	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	
							L ,	7 .			.1 1			1	I	L	·	-

() indicates the mass number of the isotope with the longest half-life.

· ¥

20.

UNIVERSITY OF SWAZILAND

C111 SECTION A ANSWER SHEET

STUDENT ID NUMBER:____

Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

						•					
1.	(A)	(B)	(C)	(D)	(E)	21.	(A)	(B)	(C)	(D)	(E)
2	(A)	(B)	(C)	(D)	(E)	22	(A)	(B)	(C)	(D)	(E)
3	(A)	(B)	(C)	(D)	(E)	23	(A)	(B)	(C)	(D)	(E)
4	(A)	(B)	(C)	(D)	(E)	24	(A)	(B)	(C)	(D)	(E)
5	(A)	(B)	(C)	(D)	(E)	25	(A)	(B)	(C)	(D)	(E)
6	(A)	(B)	(C)	(D)	(E)	26	(A)	(B)	(C)	(D)	(E)
7	(A)	(B)	(C)	(D)	(E)	27	(A)	(B)	(C)	(D)	(E)
8	(A)	(B)	(C)	(D)	(E)	28	(A)	(B)	(C)	(D)	(E)
9	(A)	(B)	(C)	(D)	(E)	29	(A)	(B)	(C)	(D)	(E)
10	(A)	(B)	(C)	(D)	(E)	30	(A)	(B)	(C)	(D)	(E)
11	(A)	(B)	(C)	(D)	(E)	31	(A)	(B)	(C)	(D)	(E)
12	(A)	(B)	(C)	(D)	(E)	32	(A)	(B)	(C)	(D)	(E)
13	(A)	(B)	(C)	(D)	(E)	33	(A)	(B)	(C)	(D)	(E)
14	(A)	(B)	(C)	(D)	(E)	34	(A)	(B)	(C)	(D)	(E)
15	(A)	(B)	(C)	(D)	(E)	35	(A)	(B)	(C)	(D)	(E)
16	(A)	(B)	(C)	(D)	(E)	36	(A)	(B)	(C)	(D)	(E)
17	(A)	(B)	(C)	(D)	(E)	37	(A)	(B)	(C)	(D)	(E)
18	(A)	(B)	(C)	(D)	(E)	38	(A)	(B)	(C)	(D)	(E)
19	(A)	(B)	(C)	(D)	(E)	39	(A)	(B)	(C)	(D)	(E)
20	(A)	(B)	(C)	(D)	(E)	40	(A)	(B)	(C)	(D)	(E)