UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2011/12

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I
COURSE NUMBER: C111
TIME: THREE (3) HOURS
INSTRUCTIONS:
(i) Answer all questions in section A (total 40 marks)
(ii) Answer any 3 questions in section B (Each question is 20 marks)
Non-programmable electronic calculators may be used.

A data sheet, a periodic table and answer sheet for section A are attached

SECTION A (40 Marks)

This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all $\mathbf{4 0}$ questions.

1. What is the chemical symbol of iron?
(A) I
(B) Fe
(C) Ir
(D) In
(E) F
2. An isotope of the element uranium has a mass number of 235 and an atomic number of 92 . The number of electrons, protons and neutrons, respectively in a neutral atom of this isotope is
(A) 92,92 , and 235
(B) 92,143 , and 92
(C) 92, 92, and 143
(D) $92,93,142$
(E) 143,143 , and 235
3. Which of the following has 17 protons, 18 neutrons, and 18 electrons?
(A) ${ }^{32} \mathrm{~S}^{2-}(\mathrm{Z}=16)$
(B) ${ }^{40} \mathrm{Ar}(\mathrm{Z}=18)$
(C) ${ }^{28} \mathrm{Si}(\mathrm{Z}=14)$
(D) ${ }^{35} \mathrm{Cl}^{-}(\mathrm{Z}=17)$
(E) ${ }^{41}{ }^{3}(\mathrm{Z}=15)$
4. Which of the following is an alkaline earth metal?
(A) V
(B) Cs
(C) Rb
(D) Y
(E) Ba
5. Which of the following elements is most likely to form an anion?
(A) Ba
(B) P
(C) V
(D) Rb
(E) Zn
6. A homogeneous mixture can be described as
(A) One prepared by shaking flour with water
(B) A substance like a rock
(C) One in which the composition is the same throughout the sample
(D) One which is a patchwork of aggregates of different substances
(E) A solution like milk
7. An example of a chemical property is
(A) Chlorine melts at $-101^{\circ} \mathrm{C}$.
(B) Chlorine requires energy to boil
(C) Chlorine burns in hydrogen to form hydrogen chloride
(D) Chlorine liberates energy when it freezes
(E) Chlorine is green-yellow in colour.
8. A solution of nickel(II) chloride contains the ions
(A) Ni^{2+} and ClO^{-}
(B) $2 \mathrm{Ni}^{+}$and $2 \mathrm{Cl}^{-}$
(C) Ni^{2+} and Cl^{-}
(D) NiO^{2+} and Cl^{-}
(E) Ni^{4+} and Cl^{-}
9. The name of ClO^{-}is the
(A) hypochlorite ion
(B) chloric ion
(C) perchlorate ion
(D) chlorine oxide ion
(E) chlorite ion
10. The name of the parent acid of the chlorite ion is
(A) chlorous acid
(B) hydrochloric acid
(C) chloric acid
(D) hypochlorous acid
(E) hydrogen chloride
11. The name of the compound $\mathrm{CO}_{2} \mathrm{O}_{3}$ is
(A) cobalt(III) oxide
(B) cobalt(II) oxide
(D) cobalt(III) trioxide
(E) dicobalt oxide
(C) dicobalt trioxide
12. The formula of phosphorus pentachloride is
(A) PCl_{5}
(B) PCl_{4}
(C) $\mathrm{P}_{2} \mathrm{Cl}_{10}$
(D) PCl_{3}
(E) $\mathrm{P}_{2} \mathrm{Cl}_{5}$
13. Which of the following is longest?
(A) 2.0 nm
(B) 200 pm
(C) $2.0 \times 10^{-9} \mathrm{dm}$
(D) $2.0 \times 10^{-4} \mathrm{~m}$
(E) $2.0 \times 10^{-10} \mathrm{~cm}$
14. Gallium has two naturally occurring isotopes; Ga-69 and Ga-71, with a natural abundance of 60.20% and 39.80%, respectively. The molar mass of Ga-69 is $68.9256 \mathrm{~g} / \mathrm{mol}$ and that of $\mathrm{Ga}-71$ is $70.9247 \mathrm{~g} / \mathrm{mol}$. What is the average molar mass of gallium?
(A) $69.93 \mathrm{~g} / \mathrm{mol}$
B) $70.13 \mathrm{~g} / \mathrm{mol}$
(C) $68.13 \mathrm{~g} / \mathrm{mol}$
(D) $70.00 \mathrm{~g} / \mathrm{mol}$
(E) $69.72 \mathrm{~g} / \mathrm{mol}$
15. If the molar mass of Ni is $58.71 \mathrm{~g} / \mathrm{mol}$, what mass contains 3.022 mol Ni ?
(A) 177.4 g
(B) 88.70 g
(C) 29.48 g
(D) 51.47 g
(E) 19.43 g
16. When aqueous solutions of barium nitrate and ammonium sulphate are mixed, what are the "spectator ions'?
(A) $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{NO}_{3}{ }^{-}$
(B) $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{SO}_{4}{ }^{-}$
(C) Ba^{2+} and NO_{3}^{-}
(D) $\mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{NO}_{3}{ }^{-}$
(E) Ba^{2+} and $\mathrm{SO}_{4}{ }^{2-}$
17. Which of the following is soluble in water?
(A) lead(II) chloride
(B) lead(II) sulphide
(C) lead(II) acetate
(D) lead(II) carbonate
(E) lead(II) sulphate
18. What type of reagent is required to convert $\mathrm{SO}_{3}{ }^{2-}$ to $\mathrm{HSO}_{3}{ }^{-}$?
(A) acid
(B) base
(C) reducing agent
(D) oxidizing agent
(E) neutralization reagent
19. Which of the following oxides gives an acidic solution when dissolved in water?
(A) $\mathrm{P}_{4} \mathrm{O}_{10}$
(B) CaO
(C) $\mathrm{Na}_{2} \mathrm{O}$
(D) SrO
(E) $\mathrm{K}_{2} \mathrm{O}$
20. What is the oxidation number of chromium in $\mathrm{Na}_{2} \mathrm{CrO}_{4}$?
(A) +6
(B) +4
(C) +7
(D) +3
(E) 0
21. Calcium reacts with water to form calcium hydroxide and hydrogen. In the balanced equation for this reaction, what is the coefficient of hydrogen?
(A) 1
(B) 2
(C) 3
(D) 5
(E) $1 / 2$
22. The following equation is unbalanced:

$$
\mathrm{CaH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}
$$

In the balanced equation, the coefficient of H_{2} is
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
23. Which of the following pairs of solutions will give a precipitate when mixed?
(A) $\mathrm{AgNO}_{3}(\mathrm{aq})$ and $\mathrm{NaCH}_{3} \mathrm{COO}(\mathrm{aq})$
(B) $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{NaCl}(\mathrm{aq})$
(C) $\mathrm{NH}_{4} \mathrm{Cl}(a q)$ and $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(a q)$
(D) $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ and $\mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{aq})$
(E) $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{CuCl}_{2}(\mathrm{aq})$
24. Consider the following reaction:

$$
2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{Hg}(\mathrm{l})+2 \mathrm{Cl}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})
$$

In this reaction
(A) $\mathrm{Hg}(\mathrm{l})$ is reduced
(B) $\mathrm{Fe}^{3+}(\mathrm{aq})$ is oxidized
(C) $\mathrm{Hg}(\mathrm{l})$ is oxidized
(D) $\mathrm{Fe}^{3+}(\mathrm{aq})$ is the reducing agent
(E) $\mathrm{Hg}(\mathrm{l})$ is the oxidizing agent
25. Calculate the wavelength of yellow light of frequency $5.20 \times 10^{14} \mathrm{~Hz}$.
(A) 520 nm
(B) 1150 nm
(C) 173 nm
(D) 382 nm
(E) 576 nm
26. Calculate the energy per photon of ultraviolet radiation of frequency $3.00 \times 0^{15} \mathrm{~Hz}$.
(A) $2.21 \times 10^{-49} \mathrm{~J}$
(B) $1.99 \times 10^{-18} \mathrm{~J}$
(C) $4.52 \times 10^{48} \mathrm{~J}$
(D) $5.97 \times 10^{-10} \mathrm{~J}$
(E) 1200
27. An electron in a hydrogen atom has the quantum numbers $n=4, l=3, m_{l}=0$. In what type of orbital is the electron located
(A) 4 p
(B) $4 f$
(C) 4 s
(D) 4 d
(E) 3d
28. How many orbitals are there in a shell with $l=2$?
(A) 5
(B) 4
(C) 7
(D) 2
(E) 1
29. For a $6 p$ subshell, what is the most positive value of m ?
(A) 0
(B) +1
(C) +6
(D) -1
(E) +5
30. What is the ground state electron configuration of a bromine atom?
(A) $[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{2}$
(B) $[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6}$
(C) $[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$
(D) $[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{3}$
(E) $[\operatorname{Ar}] 3 d^{10} 4 s^{2} 4 p^{4}$
31. What is the electron configuration of the Fe^{2+} ion?
(A) $[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}$
(B) $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
(C) $[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
(D) $[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$
(E) $[\mathrm{Ar}] 3 \mathrm{~d}^{4} 4 \mathrm{~s}^{2}$
32. What is the electron configuration of the $\mathrm{Se}^{2-\mathrm{i}}$ ion?
(A) $[\mathrm{Kr}] 5 \mathrm{~s}^{1}$
(B) $[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{4}$
(C) $[\mathrm{Kr}]$
[D] $[\mathrm{Kr}] 5 \mathrm{~s}^{2}$
(E) $[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2}$
33. Which of the following would have the smallest radius?
(A) Cl^{-1}
(B) S^{2}
(C) K^{+}
(D) K
(E) $\mathrm{Ca}^{2}+$
34. Which of the following represents the second ionization energy of the element E ?
(A) $\mathrm{E}(\mathrm{s}) \rightarrow \mathrm{E}^{+}(\mathrm{g})+\mathrm{e}^{-}(\mathrm{g})$
(B) $\mathrm{E}(\mathrm{s}) \rightarrow \mathrm{E}^{2+}(\mathrm{g})+2 \mathrm{e}^{-}(\mathrm{g})$
(C) $\mathrm{E}^{+}(\mathrm{g}) \rightarrow \mathrm{E}^{2+}(\mathrm{g})+\mathrm{e}^{-}(\mathrm{g})$
(D) $\mathrm{E}(\mathrm{g}) \rightarrow \mathrm{E}^{+}(\mathrm{g})+\mathrm{e}^{-}(\mathrm{g})$
(E) $\mathrm{E}(\mathrm{g}) \rightarrow \mathrm{E}^{2+}(\mathrm{g})+2 \mathrm{e}^{-}(\mathrm{g})$
35. The lattice enthalpy of lithium bromide is the energy change for the reaction
(A) $\mathrm{LiBr}(\mathrm{s}) \rightarrow \mathrm{Li}(\mathrm{g})+1 / 2 \mathrm{Br}_{2}(\mathrm{~g})$
(B) $\mathrm{LiBr}(\mathrm{s}) \rightarrow \mathrm{Li}^{+}(\mathrm{g})+\mathrm{Br}^{-}(\mathrm{g})$
(C) $\mathrm{Li}(\mathrm{g})+\mathrm{Br}(\mathrm{g}) \rightarrow \mathrm{LiBr}(\mathrm{s})$
(D) $\mathrm{Li}(\mathrm{s})+1 / 2 \mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{LiBr}(\mathrm{s})$
(E) $\operatorname{LiBr}(\mathrm{s}) \rightarrow \mathrm{Li}(\mathrm{g})+\mathrm{Br}(\mathrm{g})$
36. How many valenve electrons are there in the sulphite ion, $\mathrm{SO}_{3}{ }^{2-}$?
(A) 26
(B) 24
(C) 22
(D) 18
(E) 20
37. Which of the following has the highest boiling point?
(A) I_{2}
(B) Br_{2}
(C) F_{2}
(D) Cl_{2}
(E) Ar
38. Which of the following has the smallest standard molar enthalpy of vaporization?
(A) CH_{4}
(B) $\mathrm{H}_{2} \mathrm{O}$
(C) NH_{3}
(D) HF
(E) SnH_{4}
39. The boiling point of O_{2} is higher than that of N_{2} due to
(A) ion-dipole forces
(B) Hydrogen bonding
(D) dipole-dipole forces
(E) ion-ion forces.
(C) London forces
40. Which of the following is likely to form hydrogen bonds in the pure stae?
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(B) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
(C) CH_{4}
(D) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$
(E) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$

Please insert your answer sheet inside the answer book used for section B.

SECTION B (60 Marks)

There are four questions in this section. Each question is worth $\mathbf{2 0}$ marks. Answer any three questions. In all calculations answers must have the correct number of significant figures and units.

Question 1 (20 marks)

(a) Separate samples of an unknown solution are treated with dilute solutions of $\mathrm{HBr}, \mathrm{H}_{2} \mathrm{SO}_{4}$, and NaOH . A precipitate forms in all three cases. Which of the following cations could the solution contain: $\mathrm{K}^{+}, \mathrm{Pb}^{2+}, \mathrm{Ba}^{2+}$? Support your answer with appropriate equations.
(b) Which of the following solutions is most basic? $0.5 \mathrm{M} \mathrm{NH}_{3} ; 0.1 \mathrm{M} \mathrm{KOH} ; 0.1 \mathrm{M}$ $\mathrm{Ca}(\mathrm{OH})_{2}$? Explain
(c) A 3.455 g sample of a mixture was analysed for barium ion by adding a small excess of sulphuric acid to an aqueous solution of the sample. The resultant reaction produced a precipitate of Barium sulphate, which was collected by filtration, washed, dried and weighed. If 0.2815 g of the barium sulphate was obtained, what was the mass percentage of barium in the sample?
(d) The following redox reactions are important in the refining of certain elements.

$$
\begin{aligned}
& \mathrm{SiCl}_{4}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Si}(\mathrm{~s})+\mathrm{HCl}(\mathrm{~g}) \\
& \mathbf{S n O}_{2}(\mathrm{~s})+\mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{Sn}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
& \mathbf{V}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}(\mathrm{s})+\mathrm{Ca}(\mathrm{l}) \longrightarrow \Delta \mathrm{V}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})
\end{aligned}
$$

(i) Balance the above equations.
(ii) Name the source compound or ore of the element (in boldface).
(iii) What is the oxidation state of the element being extracted?

Question $2(20$ marks)

(a) Phenol $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right)$, often used as a disinfectant in stables and drains is a common water pollutant. It can be converted to less harmful oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ by reaction with ozone:

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+11 \mathrm{O}_{3} \rightarrow 3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+11 \mathrm{O}_{2}
$$

(i) What mass of ozone would be required to react with 125.0 g of phenol?
(ii) What mass of oxalic acid would be produced?
(b) Cadmium hydroxide, used in storage battery electrodes, is prepared by precipitation from a solution containing cadmium chloride and potassium hydroxide:

$$
\mathrm{CdCl}_{2}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{Cd}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{KCl}(\mathrm{aq})
$$

What mass of cadmium hydroxide could be prepared from 125 mL of 0.250 M CdCl_{2} mixed with 125 mL of 0.450 M KOH ?
(c) Oxygen difluoride can be prepared by bubbling gaseous fluorine into 0.5 M solution of NaOH :

$$
2 \mathrm{~F}_{2}(\mathrm{~g})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{OF}_{2}(\mathrm{~g})+2 \mathrm{NaF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Oxygen difluoride can be used to prepare compounds such as $\mathrm{O}_{2} \mathrm{AsF}_{6}$, containing the dioxygen cation, $\mathrm{O}_{2}{ }^{+}$, by the following reaction:

$$
4 \mathrm{OF}_{2}+2 \mathrm{AsF}_{5} \rightarrow 2 \mathrm{O}_{2} \mathrm{AsF}_{6}+3 \mathrm{~F}_{2}
$$

If $14.0 \mathrm{~g} \mathrm{~F}_{2}$ is bubbled through 650 mL of 0.500 M NaOH to prepare OF_{2} with a 78.0% yield, how many grams of $\mathrm{O}_{2} \mathrm{AsF}_{6}$ can be prepared?

Question 3 (20 marks)

(a) Consider the ammonia, NH_{3} molecule
(i) The hydrogen and nitrogen atoms in ammonia are joined together by covalent bonds. What is meant by the term covalent bond?
(ii) By referring to the formation of the ammonium ion from ammonia give the meaning of the term coordinate bond.
(iii) Give the VSEPR model shape of the ammonium ion
(iv) Name the major force of attraction which exists between molecules in liquid ammonia and explain how this type of force arises.
(b) Write the Lewis structure of ICl_{3} and calculate the formal charge of iodine.
(c) (i) What is meant by the term polarizability?
(ii) Arrange the following atoms in order of increasing polarizability: $\mathrm{O}, \mathrm{S}, \mathrm{Se}$, and Te.
(iii) Arrange the following molecules in order of increasing polarizability: $\mathrm{CH}_{4}, \mathrm{GeCl}_{4}$, $\mathrm{SiCl}_{4}, \mathrm{SiH}_{4}$, and GeBr_{4}.

Question 4 (20 marks)

(a) a chemical reaction requires at least 0.683 mol of sulphur atoms to react with 0.683 mol of copper atoms.
(i) How many S atoms are required?
(ii) How many sulphur molecules, S_{8}, are necessary?
(iii) What mass of sulphur is needed for the reaction?
(b) A chemist prepared an aqueous solution by mixing 2.50 g of ammonium phosphate trihydrate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, and 1.5 g of potassium phosphate, $\mathrm{K}_{3} \mathrm{PO}_{4}$, with 500 g of water.
(i) Determine the number of moles of each compound that was measured?
(ii) How many moles of $\mathrm{PO}_{4}{ }^{3}$ ions are present in the solution?
(iii) Calculate the mass of phosphate ions present in the solution.
(iv) What is the total mass of water present I the solution?
(c) Write the names of the following compounds
(i) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{NiF}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(iii) NaHCO_{3}

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\mathrm{A}} \mathrm{k}$	$8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $6.2364 \times 10 \mathrm{~L} \mathrm{Torr}^{-1} \mathrm{~mol}^{-1}$
Planck constant	h	$6.62608 \times 10^{.34} \mathrm{Js}$
	$\mathrm{h}=\mathrm{h} / 2 \pi$	$1.05457 \mathrm{X}-10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	$\mathrm{N}_{\text {A }}$	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	$\mathrm{m}_{\text {e }}$	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	mp_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{0}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / c^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{\text {。 }}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Js}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
		$4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{~J}^{-3} \mathrm{~m}^{3}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} \mathrm{n} / 2 \mathrm{~m}_{\mathrm{e}}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{\mathrm{N}}=\mathrm{en}^{\mathrm{N}} / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	$g e$	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \uparrow / \mathrm{m}_{\mathrm{e}} \mathrm{e}^{2}$.	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} \mathrm{c} / 2 \mathrm{~h}$	- 7.29735×10^{-3}
Rydberg constant	$\mathrm{R}_{\infty}=\mathrm{m}_{e} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \varepsilon_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67259 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$1 \mathrm{cal}=$	4.184 joules (J)	1 erg
$1 \mathrm{eV}=$	$=1 \times 10^{-7} \mathrm{~J}$	
$1.6022 \times 10^{-19} \mathrm{~J}$	$1 \mathrm{eV} /$ molecule	$=96485 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Prefixes	f	p	n	μ	m	c	d	k	M	G
	femto	pico	nano	micro	milli	centi	deci	kilo	mega	giga
	10^{-15}	10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10^{3}	10^{6}	10^{9}

() indicates the mass number of the isotope with the longest half-life.

UNIVERSITY OF SWAZILAND

Cl11 SECTION A ANSWER SHEET

STUDENT ID NUMBER:
Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

1.	(A)	(B)	(C)	(D)	(E)		21.	(A)	(B)	(C)	(D)	(E)
2	(A)	(B)	(C)	(D)	(E)		22	(A)	(B)	(C)	(D)	(E)
3	(A)	(B)	(C)	(D)	(E)		23	(A)	(B)	(C)	(D)	(E)
4	(A)	(B)	(C)	(D)	(E)		24	(A)	(B)	(C)	(D)	(E)
5	(A)	(B)	(C)	(D)	(E)		25	(A)	(B)	(C)	(D)	(E)
6	(A)	(B)	(C)	(D)	(E)		26	(A)	(B)	(C)	(D)	(E)
7	(A)	(B)	(C)	(D)	(E)		27	(A)	(B)	(C)	(D)	(E)
8	(A)	(B)	(C)	(D)	(E)		28	(A)	(B)	(C)	(D)	(E)
9	(A)	(B)	(C)	(D)	(E)		29	(A)	(B)	(C)	(D)	(E)
10	(A)	(B)	(C)	(D)	(E)		30	(A)	(B)	(C)	(D)	(E)
11	(A)	(B)	(C)	(D)	(E)		31	(A)	(B)	(C)	(D)	(E)
12	(A)	(B)	(C)	(D)	(E)		32	(A)	(B)	(C)	(D)	(E)
13	(A)	(B)	(C)	(D)	(E)		33	(A)	(B)	(C)	(D)	(E)
14	(A)	(B)	(C)	(D)	(E)		34	(A)	(B)	(C)	(D)	(E)
15	(A)	(B)	(C)	(D)	(E)		35	(A)	(B)	(C)	(D)	(E)
16	(A)	(B)	(C)	(D)	(E)		36	(A)	(B)	(C)	(D)	(E)
17	(A)	(B)	(C)	(D)	(E)		37	(A)	(B)	(C)	(D)	(E)
18	(A)	(B)	(C)	(D)	(E)		38	(A)	(B)	(C)	(D)	(E)
19	(A)	(B)	(C)	(D)	(E)		39	(A)	(B)	(C)	(D)	(E)
20	(A)	(B)	(C)	(D)	(E)		40	(A)	(B)	(C)	(D)	(E)

