UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/12

TITLE OF PAPER: INTRODUCTORY CHEMISTRY II

COURSE NUMBER: C112

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions.. Each question is worth 25 marks. Answer any four questions

Non-programmable electronic calculators may be used.

A data sheet and a periodic table are attached

Graph paper is provided

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

- (a) How does a gas differ from a liquid with respect to each of the following properties?
 - i. Density
 - ii. Compressibility
 - iii. Ability to mix with other substances of the same phase to form homogenous mixtures? [3]
- (b) Assume that you have a cylinder with a movable piston. What would happen to the gas pressure inside the cylinder if you do the following:
 - i. Decrease the volume to one-fourth the original volume while holding the temperature constant.
 - ii. Reduce the Kelvin temperature to half its original value while holding the volume constant.
 - iii. Reduce the amount of gas to half while keeping the volume and temperature constant. [3]
- (c) An aerosol spray can with a volume of 250 mL contains 2.30 g of propane gas (C_3H_8) as a propellant.
 - i. If the can is at 23° C, what is the pressure in the can?
 - ii. What volume would the propane occupy at STP?
 - iii. The can says that exposure to temperatures above 66 °C may cause the can to burst. What is the pressure in the can at this temperature? [7]
- (d) i. Calculate the density of NO₂ gas at 0.970 atm and 35 $^{\circ}$ C.
 - ii. Calculate the molar mass of a gas if 2.50 g occupies 0.875 L at 685 torr and 35 °C. [8]
- (e) Both Jacques Charles and Joseph Louis Guy-Lussac were avid balloonists. In his original flight in 1783, Jacques Charles used a balloon that contained approximately 31,150 L of H₂. He generated the H₂ using the reaction between iron and hydrochloric acid:

 $Fe(s) + 2 HCl(aq) \longrightarrow FeCl_2(aq) + H_2(g)$

How many kilograms of iron were needed to produce this volume of H_2 if the temperature was 22 °C? [4]

Question 2 (25 marks)

(a) The specific heat capacity of water is 4.18 J g⁻¹ °C⁻¹ and that of stainless steal is 0.51 J g⁻¹ °C⁻¹. Calculate the heat that must be supplied to a 500.0-g stainless steel vessel containing 450.0 g of water to raise its temperature from 25 °C to the boiling point of water, 100 °C. What percentage of the heat is used to raise the temperature of the water? [5]

2

- (b) A 50.0-mL sample of 0.500 M NaOH(aq) and 50.0 mL of 0.500 M HNO₃(aq), both initially at 18.6 °C, were mixed and stirred in a calorimeter having a calorimeter constant equal to 525.0 J °C⁻¹. The temperature of the mixture rose to 21.3 °C.
 - i. What is the change in enthalpy for the neutralization reaction?
 - ii. What is the change in enthalpy for the neutralization in kilojoules per mole of HNO₃? [5]
- (c) Strong sunshine delivers about 1 kW/m². Calculate the maximum mass of pure ethanol that can be vaporized in 10 min from a beaker left in strong sunshine, assuming the surface area of the ethanol to be 50 cm². Assume all heat results in vaporization, not an increase in temperature. ($\Delta H_{vap} = 43.5 \text{ kJ mol}^{-1}$) [5]
- (d) Calculate the enthalpy of reaction for the synthesis of hydrogen chloride gas

 $H_2(g) + HCl(g) \rightarrow 2HCl(g) \qquad \Delta H^o = ?$

From the following data:

$NH_3(g) + HCl(g)$	→	NH4Cl(s)	$\Delta H^{o} = -176 \text{ kJ}$	
$N_2(g) + 3H_2(g)$	→	2NH ₃ (g)	$\Delta H^{o} = -92.22 \text{ kJ}$	
$N_2(g) + 4H_2(g) + 6$	Cl ₂ (g)	\rightarrow 2NH ₄ Cl(s)	$\Delta H^{\circ} = -628.86 \text{ kJ}$	[5]

(e) Calculate the standard reaction enthalpy of the oxidation of ammonia:

 $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ Using the enthalpies of formation given in the table below:

Table 1: Standard enthalpies of formation, $\Delta_f H^{\circ}$

Substance	$\Delta_{\rm f} {\rm H}^{\circ}/{\rm kJ} {\rm mol}^{-1}$
$H_2O(g)$	-241.8
NH ₃ (g)	-46.11
NO(g)	+90.25

[5]

Question 5

(a) Manganate ions, MnO_4^{2-} , form permanganate ions and manganese(IV) oxide in an acidic solution at a rate of 2.0 mol/(L.min):

 $3MnO_4^{2-}(aq) + 4H^+(aq) \rightarrow 2MnO_4^-(aq) + MnO_2(l) + 2H_2O(l).$

What is the rate of formation of permanganate ions? What is the rate of reaction of $H^{+}(aq)$? [4]

- A 0.15g sample of H₂ and 0.32g sample of I₂ are confined to a 500-mL reaction vessel **(b)** and heated to 700 K, when $k = 0.063 \text{ L mol}^{-1} \text{ s}^{-1}$.
 - What is the initial reaction rate? i.
 - ii. By what factor does the reaction rate increase if the mass H₂ present in the mixture is doubled? [7]
- Sulfuryl chloride, SO₂Cl₂, decomposes by first order kinetics, and at $k = 2.81 \times 10^{-3}$ (c) min⁻¹ at a certain temperature.
 - i. Write the rate law for the reaction.
 - ii. Determine the half-life for the reaction.
 - iii. If a 14.0g sample of SO₂Cl₂ is sealed in a 2500-L reaction vessel and heated to the specified temperature, what mass will remain after 1.5 h? [6]
- (d) i. Calculate the activation energy for the conversion of cyclopropane to propene from an Arrhenius plot of the following data:

T,K	750	800	850	900
k, s ⁻¹	1.8 x 10^{-4}	2.7 x 10 ⁻³	3.0 x 10 ⁻²	0.26

ii. What is the value of the reaction rate constant at 600 °C?

Question 4 (25 marks)

(a) Write the expression for the equilibrium constant, Kp, for each of the following reactions:

i. $3H_2(g) + N_2(g) \Rightarrow 2NH_3(g)$ ii. $2NH_3(g) = 3H_2(g) + N_2(g)$ $3/2H_2(g) + \frac{1}{2}N_2(g) \Rightarrow NH_3(g)$ iii. [3]

(b) An equilibrium mixture at a certain temperature for the reaction

> $2H_2S(g) \Rightarrow 2H_2(g) + S_2(g)$ has 2.00 atm pressure of H₂S, 0.400 atm H₂ and 1.60 atm S₂. What is K_p for this reaction? [4]

(c) Given the following equilibrium constants:

> $H_2(g) + CO_2(g) = H_2O(g) + CO(g)$ $K_1 = 0.62$ i. ii. $FeO(s) + H_2(g) \Rightarrow Fe(s) + H_2O$ $K_2 = 0.42$

Find the equilibrium constant, K at the same temperature for the reaction: $FeO(s) + CO(g) = Fe(s) + CO_2(g)$ [5]

[8]

(d) K_c has a value of 12.9 for the following reaction at a temperature of 1550K. $N_2(g) + 3H_2(g) = 2NH_3(g)$

What is the value of K_P for this reaction?

(e) For the reaction

 $2NaHCO_3(s) = Na_2CO_3(s) + CO_2(g) + H_2O(g)$ The equilibrium constant K_p is 3.90 x 10⁴ at 50 °C. A 5.0 g sample of NaHCO₃ is placed in a closed evacuated flask, and the temperature is raised to 50 °C. What will be the total gas pressure at equilibrium? [5]

[5]

[3]

(f) In which direction will each of the following reactions shift after the specified stress is applied?

i. $N_2O_4(g) = 2NO(g)$ A decrease in the total pressure (an increase in volume)

- ii. $H_2(g) + CO_2(g) = H_2O(g) + CO(g)$ An increase in the concentration of CO₂
- iii. $2Cl_2(g) + 2H_2O(g) = 4HCl(g) + O_2(g)$ An decrease in temperature: $\Delta H^\circ = +113 \text{ kJ}$

Question 5

- (a) What are the concentrations of $H_3O^+(aq)$ and $OH^-(aq)$ in a solution prepared from 0.100 mol of NHO₃ dissolved in 125 mL of water. [3]
- (b) The pOH of a 0.100 M solution of aqueous ammonia, NH₃(aq) or NH₄OH is 2.87. What is the percent ionization of this solution of ammonia? What is the baseionization constant? [7]
- (c) The ionization constant for HOCl is 3.0×10^{-8} . What is the OCl⁻ concentration in a 0.0350 M solution of hypochlorous acid? [7]
- (d) What is the pH of the mixture resulting from the reaction of 25.0 mL of 0.200 M KOH and 25.0 mL of 0.200 M CH₃CO₂H? [8]

5

Question 6 (25 marks)

(a)	 Give the systematic name of the following compound and idealkane, alkene, alcohol, ketone, aldehyde, carboxylic acid etc: i. CH₃(CH₂)₃ CH₃ ii. CH₃CH₂ CH=CH₂ iii. CH₃OCH₃ iv. P-CH₃C₆H₄CHO v. CH₃(CH₂)₃ CH(OH)CH₃ 	entify the class i.e.
(b)	 Write a shortened (condensed) formula of i. 3-methyl-1-pentene ii. 4-ethyl-3,3-dimethyheptane iii. 2-octanone iv. butanoic acid 	[8]
(c)	 Write the structural formula of the major product formed when i. 2-butanol is heated with hydrobromic acid ii. ethanoic acid reacts with methanol 	[4]
(d)	Suggest two compounds that may be used to prepare ethyl eth	annate and write a

(d) Suggest two compounds that may be used to prepare ethyl ethanoate and write a balanced equation for the reaction. [3]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	с	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_{A}e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	*	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = \hbar/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m _e	9.109 39 X 10 ⁻³¹ Kg
proton	. m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	$1.112\ 65\ X\ 10^{-10}\ J^{-1}\ C^2\ m^{-1}$
Vacuum permeability	μ	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
· ·		$4\pi \ge 10^{-7} T^2 J^{-1} m^3$
Magneton		
Bohr	$\mu_{B} = e\hbar/2m_{e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	⁻ 7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_{o}e^{4}/8h^{3}c\varepsilon_{o}^{2}$	$1.097 \ 37 \ X \ 10^7 \ m^{-1}$
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	1 erg 1 eV/n	nolecul	e	* ==	1 X 10 ^{.7} J 96 485 kJ mol ⁻¹				
Prefixes	femto pico	n nano 10-9	, micro	milli	centi	d deci 10 ⁻¹	k kilo 10 ³	M mega 10⁰	G giga 10 ⁹

PERIODIC TABLE OF ELEMENTS

_	-							GI	ROUPS	:			•••					
	1	2	3	4	5	б.	7	8	9	10	11	12	13	14	15	16	17	18
ERIODS	<u> </u>	١١٨	IIIB	IVB	٧B	, VIB	VIIB		VIIIB		IB	IIB	IIIA -	IVA	VA	VIA	VIIA	VIIIA
. 1	1.008 11	•				•		•								,	•	4.003 11e 2
		0.010										J	10 0 1 1	12 011	14.007	15.999	18.998	20.180
	6,941	9.012			÷							c mass —)		12.011	14.007 N		F	-Ne
2	Li	Be									Sym Atomi		≯ ^B _δ	C 6	7	0 8	р 9	.10
											Atom	IC INO.				_		
	22.990	24:305											26.982	28.086	30.974	32.06	35.453	39.948
3	Na	Mg			*. *	TRAN	SITION	ELEM	ENTS		•		Al	Si 🕔	Р	S	Cl	Ar
	11	12				·				<u>م</u>			13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58:69 -	-63.546	65.39 -	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V .	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr .
	19	20	21	22	23	24	25	· 26	27	28	29	30	31	32	33	34	. 35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	_79	80	81	82	83	-84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)			•					
7	Fr 87	Ra 88	**Ac 89	Rf	Ha	Unh	Uns	Uno	Une	Uun								
	0/	00	09	104	105	106	107.	108	109	110								
					•													1
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97	
- *L	anthani	de Serie	S	Ce	Pr	Nd .	Pm	Sm	Eu	Gd	Tb	Dy	Ho	- Er	Tm	Yb	Lu	
		•		58 ·	-59	60	61	62	63	64	65	66 .	. 67	68	69	70	71	ļ
**	*Actinid	e Series		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
		•		Th	Pa	U	Np	Pu ·	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	1

() indicates the mass number of the isotope with the longest half-life.

. Y