UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/12

TITLE OF PAPER: INTRODUCTORY CHEMISTRY II

COURSE NUMBER: C112

TIME:
THREE (3) HOURS

INSTRUCTIONS:

There are six questions.. Each question is worth 25 marks. Answer any four questions

Non-programmable electronic calculators may be used.

A data sheet and a periodic table are attached
Graph paper is provided

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

(a) How does a gas differ from a liquid with respect to each of the following properties?
i. Density
ii. Compressibility
iii. Ability to mix with other substances of the same phase to form homogenous mixtures?
(b) Assume that you have a cylinder with a movable piston. What would happen to the gas pressure inside the cylinder if you do the following:
i. Decrease the volume to one-fourth the original volume while holding the temperature constant.
ii. Reduce the Kelvin temperature to half its original value while holding the volume constant.
iii. Reduce the amount of gas to half while keeping the volume and temperature constant.
(c) An aerosol spray can with a volume of 250 mL contains 2.30 g of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ as a propellant.
i. If the can is at $23^{\circ} \mathrm{C}$, what is the pressure in the can?
ii. What volume would the propane occupy at STP?
iii. The can says that exposure to temperatures above $66^{\circ} \mathrm{C}$ may cause the can to burst. What is the pressure in the can at this temperature?
(d) i. Calculate the density of NO_{2} gas at 0.970 atm and $35^{\circ} \mathrm{C}$.
ii. Calculate the molar mass of a gas if 2.50 g occupies 0.875 L at 685 torr and 35 ${ }^{\circ} \mathrm{C}$.
(e) Both Jacques Charles and Joseph Louis Guy-Lussac were avid balloonists. In his original flight in 1783, Jacques Charles used a balloon that contained approximately $31,150 \mathrm{~L}$ of H_{2}. He generated the H_{2} using the reaction between iron and hydrochloric acid:

$$
\mathrm{Fe}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

How many kilograms of iron were needed to produce this volume of H_{2} if the temperature was $22^{\circ} \mathrm{C}$?

Question 2 (25 marks)

(a) The specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ and that of stainless steal is 0.51 J $\mathrm{g}^{-1}{ }^{\mathrm{o}} \mathrm{C}^{-1}$. Calculate the heat that must be supplied to a 500.0 g stainless steel vessel containing 450.0 g of water to raise its temperature from $25^{\circ} \mathrm{C}$ to the boiling point of water, $100^{\circ} \mathrm{C}$. What percentage of the heat is used to raise the temperature of the water?
(b) A $50.0-\mathrm{mL}$ sample of $0.500 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ and 50.0 mL of $0.500 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$, both initially at $18.6^{\circ} \mathrm{C}$, were mixed and stirred in a calorimeter having a calorimeter constant equal to $525.0 \mathrm{~J}^{\circ} \mathrm{C}^{-1}$. The temperature of the mixture rose to $21.3^{\circ} \mathrm{C}$.
i. What is the change in enthalpy for the neutralization reaction?
ii. What is the change in enthalpy for the neutralization in kilojoules per mole of HNO_{3} ?
(c) Strong sunshine delivers about $1 \mathrm{~kW} / \mathrm{m}^{2}$. Calculate the maximum mass of pure ethanol that can be vaporized in 10 min from a beaker left in strong sunshine, assuming the surface area of the ethanol to be $50 \mathrm{~cm}^{2}$. Assume all heat results in vaporization, not an increase in temperature. $\left(\Delta \mathrm{H}_{\text {vap }}=43.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(d) Calculate the enthalpy of reaction for the synthesis of hydrogen chloride gas

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \rightarrow \quad 2 \mathrm{HCl}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=?
$$

From the following data:

$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$	\rightarrow	$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	$\Delta \mathrm{H}^{0}=-176 \mathrm{~kJ}$
$\mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$	\rightarrow	$2 \mathrm{NH}_{3}(\mathrm{~g})$	$\Delta \mathrm{H}^{0}=-92.22 \mathrm{~kJ}$
$\mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$	\rightarrow	$2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	$\Delta \mathrm{H}^{\circ}=-628.86 \mathrm{~kJ}$

(e) Calculate the standard reaction enthalpy of the oxidation of ammonia:

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Using the enthalpies of formation given in the table below:
Table 1: Standard enthalpies of formation, $\Delta_{f} \mathrm{H}^{0}$

Substance	$\Delta_{\mathrm{f}^{\circ}} / \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8
$\mathrm{NH}_{3}(\mathrm{~g})$	-46.11
$\mathrm{NO}(\mathrm{g})$	+90.25

Question 5

(a) Manganate ions, $\mathrm{MnO}_{4}{ }^{2-}$, form permanganate ions and manganese(IV) oxide in an acidic solution at a rate of $2.0 \mathrm{~mol} /(\mathrm{L} . \mathrm{min})$:
$3 \mathrm{MnO}_{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq}) \quad \rightarrow \quad 2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{MnO}_{2}(\mathrm{l})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.
What is the rate of formation of permanganate ions? What is the rate of reaction of $\mathrm{H}^{+}(\mathrm{aq})$?
(b) A 0.15 g sample of H_{2} and 0.32 g sample of I_{2} are confined to a $500-\mathrm{mL}$ reaction vessel and heated to 700 K , when $\mathrm{k}=0.063 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$.
i. What is the initial reaction rate?
ii. By what factor does the reaction rate increase if the mass H_{2} present in the mixture is doubled?
(c) Sulfuryl chloride, $\mathrm{SO}_{2} \mathrm{Cl}_{2}$, decomposes by first order kinetics, and at $\mathrm{k}=2.81 \times 10^{-3}$ $\min ^{-1}$ at a certain temperature.
i. Write the rate law for the reaction.
ii. Determine the half-life for the reaction.
iii. If a 14.0 g sample of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is sealed in a $2500-\mathrm{L}$ reaction vessel and heated to the specified temperature, what mass will remain after 1.5 h ?
(d) i. Calculate the activation energy for the conversion of cyclopropane to propene from an Arrhenius plot of the following data:

T, K	750	800	850	900
$\mathrm{k}, \mathrm{s}^{-1}$	1.8×10^{-4}	2.7×10^{-3}	3.0×10^{-2}	0.26

ii. What is the value of the reaction rate constant at $600^{\circ} \mathrm{C}$?

Question 4 (25 marks)

(a) Write the expression for the equilibrium constant, K_{p}, for each of the following reactions:

$$
\begin{array}{ll}
\text { i. } & 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g}) \\
\text { ii. } & 2 \mathrm{NH}_{3}(\mathrm{~g})=3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \\
\text { iii. } & 3 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{~N}_{2}(\mathrm{~g})=\mathrm{NH}_{3}(\mathrm{~g}) \tag{3}
\end{array}
$$

(b) An equilibrium mixture at a certain temperature for the reaction

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})
$$

has 2.00 atm pressure of $\mathrm{H}_{2} \mathrm{~S}, 0.400 \mathrm{~atm} \mathrm{H}_{2}$ and $1.60 \mathrm{~atm} \mathrm{~S}_{2}$. What is K_{p} for this reaction?
(c) Given the following equilibrium constants:
i. $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$

$$
\mathrm{K}_{1}=0.62
$$

ii. $\quad \mathrm{FeO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}$

Find the equilibrium constant, K , at the same temperature for the reaction:

$$
\begin{equation*}
\mathrm{FeO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \tag{5}
\end{equation*}
$$

(d) K_{c} has a value of 12.9 for the following reaction at a temperature of 1550 K .
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
What is the value of K_{P} for this reaction?
(e) For the reaction
$2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The equilibrium constant K_{p} is 3.90×10^{-4} at $50^{\circ} \mathrm{C}$. A 5.0 g sample of NaHCO_{3} is placed in a closed evacuated flask, and the temperature is raised to $50^{\circ} \mathrm{C}$. What will be the total gas pressure at equilibrium?
(f) In which direction will each of the following reactions shift after the specified stress is applied?
i. $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$

A decrease in the total pressure (an increase in volume)
ii. $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$

An increase in the concentration of CO_{2}
iii. $\quad 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})=4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

An decrease in temperature: $\Delta \mathrm{H}^{\circ}=+113 \mathrm{~kJ}$

Question 5

(a) What are the concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$ in a solution prepared from 0.100 mol of NHO_{3} dissolved in 125 mL of water.
(b) The pOH of a 0.100 M solution of aqueous ammonia, $\mathrm{NH}_{3}(\mathrm{aq})$ or $\mathrm{NH}_{4} \mathrm{OH}$ is 2.87 . What is the percent ionization of this solution of ammonia? What is the baseionization constant?
(c) The ionization constant for HOCl is 3.0×10^{-8}. What is the OCl^{-}concentration in a 0.0350 M solution of hypochlorous acid?
(d) What is the pH of the mixture resulting from the reaction of 25.0 mL of 0.200 M KOH and 25.0 mL of $0.200 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$?

Question 6 (25 marks)

(a) Give the systematic name of the following compound and identify the class i.e. alkane, alkene, alcohol, ketone, aldehyde, carboxylic acid etc:
i. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
ii. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
ii. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
iv. $\quad \mathrm{P}^{-} \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$
v. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
[10]
(b) Write a shortened (condensed) formula of
i. 3-methyl-1-pentene
ii. 4-ethyl-3,3-dimethyheptane
iii. 2-octanone
iv. butanoic acid
(c) Write the structural formula of the major product formed when
i. 2-butanol is heated with hydrobromic acid
ii. ethanoic acid reacts with methanol
[4]
(d) Suggest two compounds that may be used to prepare ethyl ethanoate and write a balanced equation for the reaction.
[3]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\lambda} \mathrm{k}$	$\begin{aligned} & 8.31451 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\ & 8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & 6.2364 \times 10 \mathrm{LTOr} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$
Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$h=\mathrm{h} / 2 \pi$	$1.05457 \mathrm{X}-10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	$\mathrm{N}_{\text {A }}$	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	$\mathrm{m}_{\text {c }}$	$9.10939 \times 10^{-34} \mathrm{Kg}$
proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{0}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / c^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{\text {。 }}$	
Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{~J} \mathrm{~s}^{2} \mathrm{C}^{-7} \mathrm{~m}^{-1}$
		$4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} \hbar / 2 \mathrm{~m}_{\mathrm{c}}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{\mathrm{N}}=\mathrm{e} \uparrow / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	$g e$	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \Pi / \mathrm{m}_{\mathrm{e}} \mathrm{e}^{2}$.	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} c / 2 h$	7.29735×10^{-3}
Rydberg constant	$\mathrm{R}_{0}=m_{e} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \varepsilon_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~ms}^{-2}$
Gravitational constant	G	$6.67259 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$1 \mathrm{cal}=$	4.184 joules (J)	1 erg
$1 \mathrm{eV}=$	$=1.6022 \times 10^{-19} \mathrm{~J}$	$1 \mathrm{eV} /$ molecule

Prefixes	f	p	n	μ	m	c	d	k	M	G
	femto	pico	nano	micro	milli	centi	deci	kilo	mega	giga
	10^{-15}	10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10^{3}	10^{6}	10^{9}

PERIODIC TABLE OF ELEMENTS

