UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2011/12

TITLE OF PAPER: INTRODUCTORY CHEMISTRY II

COURSE NUMBER: C112

TIME:

THREE (3) HOURS

INSTRUCTIONS:

Answer any four questions. Each question is worth 25 marks.

Non-programmable electronic calculators may be used.

A data sheet and periodic table are attached

Graph paper is provided

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR.

Question 1 25 marks)

- (a) A fixed quantity of gas at 21 °C exhibits a pressure of 752 torr and occupies a volume of 4.38 L.
 - i. Use Boyle's law to calculate the volume the gas will occupy if the pressure is increased to 1.88 atm while the temperature is held constant.
 - ii. Use Charles's law to calculate the volume the gas will occupy if the temperature is increased to 175 °C while the pressure is held constant. [4]
- (b) i. Write the ideal-gas equation, and give the units used for each term in the equation when R = 0.0821 L atm mol⁻¹ K⁻¹.
 - ii. What is an ideal gas?

- [4]
- (c) Many gases are shipped in high-pressure containers. Consider a steel tank whose volume is 65.0 L and which contains O₂ gas at a pressure of 16,500 kPa at 23 °C.
 - i. What mass of O_2 does the tank contain?
 - ii. What volume would the gas occupy at STP?
 - iii. At what temperature would the pressure in the tank equal 150.0 atm? [9]
- (d) A mixture of gases contains 10.25 g of N₂, 1.83 g of H₂ and 7.95 g of NH₃. If the total pressure of the mixture is 1.85 atm, what is the partial pressure of each component? [8]

Question 2 (25 marks)

- (a) i. Calculate the amount of energy needed to raise the temperature of 10.0 g of iron (specific heat capacity, 0.45 Jg⁻¹ °C⁻¹) from 25 °C to 500 °C.
 - ii. What mass of gold (specific heat capacity, 0.13 J $g^{-1} {}^{\circ}C^{-1}$) can be heated through the same temperature difference when supplied with the same amount of energy as in (i)? [5]
- (b) The vaporization of 0.235 mol of liquid CH₄ requires 1.93 kJ of heat. What is the enthalpy of vaporization of methane? [4]
- (c) Calculate the reaction enthalpy for the formation of anhydrous aluminium chloride $2 \operatorname{Al}(s) + 3\operatorname{Cl}_2(g) \longrightarrow 2\operatorname{AlCl}_3(s) \qquad \Delta H^\circ = ?$

From the following data:

$2Al(s) + 6HCl(aq) \longrightarrow$	$2AlCl_3(aq) + 3H_2(g)$	$\Delta H^{o} = -1049 kJ$	
$HCl(g) \longrightarrow HCl(aq)$		$\Delta H^{\circ} = -73.5 \text{ kJ}$	
$H_2(g) + Cl_2(aq) \longrightarrow$	2HCl(g)	$\Delta H^{o} = -185 \text{ kJ}$	
$AlCl_3(s) \longrightarrow AlCl_3(aq)$		$\Delta H^{o} = -323 \text{ kJ}$	[5]

2

(d) Calculate the standard reaction enthalpy for the formation of boron trifluoride, which is widely used as a catalyst in the chemical industry:

$$B_2O_3(s) + 3CaF_2(s) \longrightarrow 2BF_3(g) + 3CaO(s)$$

Use the standard enthalpies of formation given in the table below: [5]

Substance	$\Delta_{\rm f} {\rm H}^{\rm o}/{\rm kJ} {\rm mol}^{-1}$
$B_2O_3(s)$	-1272.8
BF ₃ (g)	-1137.0
CaF ₂ (s)	-1219.6
CaO(s)	-635.09

Table 1: standard enthalpies of formation, $\Delta_f H^o$

(e) When 3.245 g of lead(IV) oxide is formed from lead metal and oxygen, 3.76 kJ of heat is released. What is the enthalpy of formation of PbO₂(s)? [6]

Question 3 (25 marks)

- (a) The rate of formation of the dichromate ions is 0.14 mol L⁻¹ s⁻¹ in the reaction $2CrO_4^{2-}(aq) + 2H^+(aq) \rightarrow Cr_2O_7^{2-}(aq) + H_2O(1)$. What is the rate of reaction of the chromate ion in the reaction? What is the reaction rate? [4]
- (b) A 100 mg sample of NO₂, confined to a 200-mL reaction vessel, is heated to 300 °C, when k=0.54 L mol⁻¹ s⁻¹.
 - i. What is the initial reaction rate?
 - ii. How does the reaction rate change (and by what factor) if the mass of NO₂ present in the container is increased to 200 mg? [8]
- (c) The following data were collected for the reaction $C_2H_6(g) \rightarrow 2 CH_3(g)$ at 700 °C:

Time, s	0	1000	2000	3000	4000
$[C_2H_6]$, mmol L ⁻¹	1.59	0.92	0.53	0.31	0.18

- i. Plot the data to confirm that the reaction is first order.
- ii. From the graph, determine the reaction rate constant. [7]
- (d) The rate constant of the first-order reaction $2N_2O(g) \rightarrow 2N_2(g) + O_2(g)$ is 0.38 s⁻¹ at 1000 K and 0.87 s⁻¹ at 1030 K. What is the activation energy of the reaction? [6]

3

Question 4 (25 marks)

(a) Write the expression for the equilibrium constant, K_c , for each of the following reactions:

i. $2CO_2(g) = 2CO(g) + O_2(g)$

ii. $NH_4HS(s) \Rightarrow NH_3(g) + H_2S(g)$

iii.
$$\frac{1}{2}N_2(g) + \frac{1}{2}Cl_2(g) + 2H_2(g) = NH_4Cl(s)$$
 [3]

(b) When the reversible reaction

 $2 A + B \neq 2 C$

Reached equilibrium, the following concentrations were measured: [A] = 0.40 M, [B] = 0.30 M, and [C] = 0.55 M. What is the value of K_c for this reaction? [4]

(c) Write the expressions for the equilibrium constants for the following reactions:

$$N_2(g) + 3H_2(g) \Rightarrow 2NH_3(g)$$

 $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \Rightarrow NH_3(g)$

- i. If $K_c = 0.49$ for the first reaction, what is the value of K_c for the second reaction at the same temperature.
- ii. Determine the value of the equilibrium constant for the following reaction at the same temperature:

$$2NH_3(g) = N_2(g) + 3H_2(g)$$
[6]

(d) Calculate K_p for the dissociation of PCl₅ at 250 °C.

$$PCl_5(g) \Rightarrow PCl_3(g) + Cl_2(g)$$

At this temperature, K_c is 0.00900

(e) For the reaction:

 $CO(g) + H_2O(g) \Rightarrow CO_2(g) + H_2(g)$

the equilibrium constant is $K_p = 4.00$ at a certain temperature. Suppose 1.00 atm CO and 2.00 atm H₂O are introduced into a vessel. What is the pressure of CO₂ at equilibrium? [6]

- (f) In which direction will each of the following reactions shift after the specified stress is applied?
 - i. $2Cl_2(g) + 2H_2O(g) = 4HCl(g) + O_2(g)$ An increase in temperature: $\Delta H^o = +113 \text{ kJ}$
 - ii. $NH_4HS(s) = NH_3(g) + H_2S(g)$ An increase in the amount of NH_4HS [2]

[4]

Question 5 (25 marks)

- (a) What are the concentrations of $H_3O^+(aq)$ and $OH^-(aq)$ in a solution prepared from 0.0250 mol of Ba(OH)₂ dissolved in 105 mL of water? [3]
- (b) The pOH of a 0.120 M solution of formic acid, HCO_2H is 11.67.
 - i. What is the acid ionization constant of formic acid?
 - ii. What is the percent ionization of formic acid in this solution? [7]
- (c) The ionization constant for HCN is 4.0×10^{-10} . What is the CN⁻ concentration in a 0.125 M solution of hydrocyanic acid? [7]
- (d) What is the pH of the mixture resulting from the reaction of 25.0 mL of 0.200 M KOH and 25.0 mL of 0.200 M CH₃CO₂H? ($K_a = 1.8 \times 10^{-5}$ for acetic acid) [8]

Question 6 (25 marks)

(a)		the systematic name of the following compound and the, alkene, alcohol, ketone, aldehyde, carboxylic acid etc (CH ₃) ₂ CHCH(CH ₃) ₂	identify t	he c	lass	i.e.
	ii.	$CH_3C\equiv CCH_3$				
	iii.	CH ₃ (CH ₂) ₄ COOH				
	iv.	CH ₃ NH ₂				
	v.	o-CH ₃ C ₆ H ₄ OH			[10)]
(b)	Writ	e a shortened (condensed) formula of				
	i.	3-phenyl-1-butene				
	ii.	cis-4-methyl-2-hexene				
	iii.	5-methlyoctanal				
	iv.	2-heptanol				[8]
(c)	Writ	e the structural formula of the major product formed when				
	i.	2-butanol is heated with concentrated sulphuric acid.				
	ii.	1-butanol is heated with propanoic acid.			I	[4]
(d)	Sugg	gest two compounds that may be used to prepare methyl	benzoate	and	wri	te a
	balar	nced equation for the reaction.				[3]

USEFUL DATA

1 atm = 101325 Pa = 760 Torr

 $K_w = 1.00 \times 10^{-14}$

First order integrated equation $\ln[A]_t = \ln[A]_0 - kt$

Second order integrated equation $\frac{1}{[A]_t} = \frac{1}{[A]_0} + kt$

Arrhenius equation $k = Ae^{-E_a/RT}$

Quadratic equation: $ax^2 + bx + c = 0$ solution is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

PERIODIC TABLE OF ELEMENTS

								G	ROUPS				٠.					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	١٨	١١٨	HIB	IVB	·VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
	1.008							•	•									4.003
. 1	11																•	lle
			-												,		1	2
	6.941	9.012										c mass 🗕		12.011	14.007	15,999	18.998	20.180
2	Li	Be											B	C	N	0	F	-Ne
	3	4									Atom	ic No.	► 5	6	7	8	9	10
	22.990	24:305	-										26.982	28.086	30.974	32.06	35.453	39.948
3	Na	Mg				TRAN	SITION	t el em	ENTS		•		Al	Si	P	S	CI	Ar
	11	12											13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39 -	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V.	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	- 26	27	28	29	30	31	32	33	34	. 35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101.07	102.94	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	РЬ	Bi	Po	At	Rŋ
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)						ممرر		•
7	Fr	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun						ł		
	87	88	89	104	105	106	107.	108	109	110								
		-						đ										
		2		140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97	
. *L	anthani	de Serie	S	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	- Er	Tm	Yb	Lu	
	,			58	59	60	61	62	63	64	65	66 .	. 67	68	69	70	71	
**	^k Actinid	e Series		232.04	231.04	238.03	237.05	(244)	(243)	(2 47)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	15
				Th	Pa	U	Np	Pu ·	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	•
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	
				·	() :		· · · · · · · · · · · · · · · · · · ·	I	Cale a land		the low		<u>- 1:C.</u>	L			<u></u>	

() indicates the mass number of the isotope with the longest half-life.

g

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	с	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m,	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m _n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ	$4\pi X 10^{-7} J s^2 C^{-2} m^{-1}$
		$4\pi \ge 10^{-7} T^2 J^{-1} m^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{r} = m_{e}e^{4}/8h^{3}c\varepsilon_{o}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	- •	
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

cal = eV =	4.184 joui 1.602 2 X	1 erg 1 eV/n	nolecule	e	, 	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹			
Prefixes	f p femto pi 10 ⁻¹⁵ 10	co nano	micro	milli	centi	deci	kilo	M mega 10 ⁶	G giga 10°