UNIVERSITY OF SWAZILAND
 SUPPLEMENTARY EXAMINATION 2011/12

TITLE OF PAPER: INTRODUCTORY CHEMISTRY II

COURSE NUMBER: C112

TIME:
THREE (3) HOURS

INSTRUCTIONS:
Answer any four questions. Each question is worth 25 marks.

Non-programmable electronic calculators may be used.

A data sheet and periodic table are attached
Graph paper is provided

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR.

Question 125 marks)

(a) A fixed quantity of gas at $21^{\circ} \mathrm{C}$ exhibits a pressure of 752 torr and occupies a volume of 4.38 L .
i. Use Boyle's law to calculate the volume the gas will occupy if the pressure is increased to 1.88 atm while the temperature is held constant.
ii. Use Charles's law to calculate the volume the gas will occupy if the temperature is increased to $175^{\circ} \mathrm{C}$ while the pressure is held constant.
(b) i. Write the ideal-gas equation, and give the units used for each term in the equation when $R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$.
ii. What is an ideal gas?
(c) Many gases are shipped in high-pressure containers. Consider a steel tank whose volume is 65.0 L and which contains O_{2} gas at a pressure of $16,500 \mathrm{kPa}$ at $23^{\circ} \mathrm{C}$.
i. What mass of O_{2} does the tank contain?
ii. What volume would the gas occupy at STP?
iii. At what temperature would the pressure in the tank equal 150.0 atm ?
(d) A mixture of gases contains 10.25 g of $\mathrm{N}_{2}, 1.83 \mathrm{~g}$ of H_{2} and 7.95 g of NH_{3}. If the total pressure of the mixture is 1.85 atm , what is the partial pressure of each component?

Question 2 (25 marks)

(a) i. Calculate the amount of energy needed to raise the temperature of 10.0 g of iron (specific heat capacity, $0.45 \mathrm{Jg}^{-1} \mathrm{C}^{-1}$) from $25^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$.
ii. What mass of gold (specific heat capacity, $0.13 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$) can be heated through the same temperature difference when supplied with the same amount of energy as in (i)?
(b) The vaporization of 0.235 mol of liquid CH_{4} requires 1.93 kJ of heat. What is the enthalpy of vaporization of methane?
(c) Calculate the reaction enthalpy for the formation of anhydrous aluminium chloride

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}^{0}=?
$$

From the following data:

$$
\begin{array}{ll}
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \longrightarrow & 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=-1049 \mathrm{~kJ} \\
\mathrm{HCl}(\mathrm{~g}) \longrightarrow \mathrm{HCl}(\mathrm{aq}) & \Delta \mathrm{H}^{\circ}=-73.5 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{aq}) \longrightarrow & 2 \mathrm{HCl}(\mathrm{~g}) \\
\mathrm{AlCl}_{3}(\mathrm{~s}) \longrightarrow \mathrm{AlCl}_{3}(\mathrm{aq}) & \Delta \mathrm{H}^{\circ}=-185 \mathrm{~kJ} \tag{5}\\
& \Delta \mathrm{H}^{\circ}=-323 \mathrm{~kJ}
\end{array}
$$

(d) Calculate the standard reaction enthalpy for the formation of boron trifluoride, which is widely used as a catalyst in the chemical industry:

$$
\mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CaF}_{2}(\mathrm{~s}) \longrightarrow 2 \mathrm{BF}_{3}(\mathrm{~g})+3 \mathrm{CaO}(\mathrm{~s})
$$

Use the standard enthalpies of formation given in the table below:
Table 1: standard enthalpies of formation, $\Delta_{\mathrm{f}} \mathrm{H}^{0}$

Substance	$\Delta_{\mathrm{d}} \mathrm{H}^{0} / \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{~B}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-1272.8
$\mathrm{BF}_{3}(\mathrm{~g})$	-1137.0
$\mathrm{CaF}_{2}(\mathrm{~s})$	-1219.6
$\mathrm{CaO}(\mathrm{s})$	-635.09

(e) When 3.245 g of lead(IV) oxide is formed from lead metal and oxygen, 3.76 kJ of heat is released. What is the enthalpy of formation of $\mathrm{PbO}_{2}(\mathrm{~s})$?

Question 3 (25 marks)

(a) The rate of formation of the dichromate ions is $0.14 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ in the reaction $2 \mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$. What is the rate of reaction of the chromate ion in the reaction? What is the reaction rate?
(b) A 100 mg sample of NO_{2}, confined to a $200-\mathrm{mL}$ reaction vessel, is heated to $300^{\circ} \mathrm{C}$, when $\mathrm{k}=0.54 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$.
i. What is the initial reaction rate?
ii. How does the reaction rate change (and by what factor) if the mass of NO_{2} present in the container is increased to 200 mg ?
(c) The following data were collected for the reaction $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow 2 \mathrm{CH}_{3}(\mathrm{~g})$ at $700{ }^{\circ} \mathrm{C}$:

Time, s	0	1000	2000	3000	4000
$\left[\mathrm{C}_{2} \mathrm{H}_{6}\right], \mathrm{mmol} \mathrm{L}^{-1}$	1.59	0.92	0.53	0.31	0.18

i. Plot the data to confirm that the reaction is first order.
ii. From the graph, determine the reaction rate constant.
(d) The rate constant of the first-order reaction $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \quad 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is $0.38 \mathrm{~s}^{-1}$ at 1000 K and $0.87 \mathrm{~s}^{-1}$ at 1030 K . What is the activation energy of the reaction? [6]

Ouestion 4 (25 marks)

(a) Write the expression for the equilibrium constant, K_{c}, for each of the following reactions:
i. $\quad 2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
ii. $\quad \mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
iii. $\quad 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
(b) When the reversible reaction

$$
2 \mathrm{~A}+\mathrm{B} \rightleftharpoons 2 \mathrm{C}
$$

Reached equilibrium, the following concentrations were measured: $[\mathrm{A}]=0.40 \mathrm{M},[\mathrm{B}]$ $=0.30 \mathrm{M}$, and $[\mathrm{C}]=0.55 \mathrm{M}$. What is the value of K_{c} for this reaction?
(c) Write the expressions for the equilibrium constants for the following reactions:

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})
\end{aligned}
$$

i. If $K_{c}=0.49$ for the first reaction, what is the value of K_{c} for the second reaction at the same temperature.
ii. Determine the value of the equilibrium constant for the following reaction at the same temperature:

$$
\begin{equation*}
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \tag{6}
\end{equation*}
$$

(d) Calculate K_{p} for the dissociation of PCl_{5} at $250{ }^{\circ} \mathrm{C}$.

$$
\begin{equation*}
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \tag{4}
\end{equation*}
$$

At this temperature, K_{c} is 0.00900
(e) For the reaction:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

the equilibrium constant is $\mathrm{K}_{\mathrm{p}}=4.00$ at a certain temperature. Suppose 1.00 atm CO and $2.00 \mathrm{~atm} \mathrm{H}_{2} \mathrm{O}$ are introduced into a vessel. What is the pressure of CO_{2} at equilibrium?
(f) In which direction will each of the following reactions shift after the specified stress is applied?
i. $\quad 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})=4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

An increase in temperature: $\Delta \mathrm{H}^{\circ}=+113 \mathrm{~kJ}$
ii. $\quad \mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})=\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$

An increase in the amount of $\mathrm{NH}_{4} \mathrm{HS}$

Question 5 (25 marks)

(a) What are the concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$ in a solution prepared from 0.0250 mol of $\mathrm{Ba}(\mathrm{OH})_{2}$ dissolved in 105 mL of water?
(b) The pOH of a 0.120 M solution of formic acid, $\mathrm{HCO}_{2} \mathrm{H}$ is 11.67 .
i. What is the acid ionization constant of formic acid?
ii. What is the percent ionization of formic acid in this solution?
(c) The ionization constant for HCN is 4.0×10^{-10}. What is the CN^{-}concentration in a 0.125 M solution of hydrocyanic acid?
(d) What is the pH of the mixture resulting from the reaction of 25.0 mL of 0.200 M KOH and 25.0 mL of $0.200 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} ? \quad\left(\mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}\right.$ for acetic acid)

Question 6 (25 marks)

(a) Give the systematic name of the following compound and identify the class i.e. alkane, alkene, alcohol, ketone, aldehyde, carboxylic acid etc
i. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}$
ii. $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}$
iii. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$
iv. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
v. $0-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$
(b) Write a shortened (condensed) formula of
i. 3-phenyl-1-butene
ii. cis-4-methyl-2-hexene
iii. 5-methlyoctanal
iv. 2-heptanol
(c) Write the structural formula of the major product formed when
i. 2-butanol is heated with concentrated sulphuric acid.
ii. 1-butanol is heated with propanoic acid.
(d) Suggest two compounds that may be used to prepare methyl benzoate and write a balanced equation for the reaction.

USEFULDATA

$1 \mathrm{~atm}=101325 \mathrm{~Pa}=760$ Torr
$\mathrm{K}_{\mathrm{w}}=1.00 \times 10^{-14}$
First order integrated equation $\ln [\mathrm{A}]_{t}=\ln [\mathrm{A}]_{0}-\mathrm{kt}$
Second order integrated equation $\frac{1}{[A]_{t}}=\frac{1}{[A]_{0}}+k t$
Arrhenius equation $k=A e^{-E_{a} / R T}$
Quadratic equation: $a x^{2}+b x+c=0$ solution is $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

PERIODIC TABLE OF ELEMENTS

GROUPS																		
PERIODS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	11	111	1118	IVB	VB	VIB	VIIB	VIIIB			IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIII 1
$\cdots 1$	$\begin{gathered} 1.001 \\ 11 \\ 1 \end{gathered}$										(10.811							$\begin{gathered} 4.003 \\ 11 \mathrm{c} \\ 2 \\ \hline \end{gathered}$
2	$\begin{gathered} 6.941 \\ \mathrm{Li} \\ 3 \end{gathered}$	$\begin{gathered} 9.012 \\ B \mathrm{c} \\ 4 \end{gathered}$	Atomic mass $\begin{gathered}\text { Aymbol } \\ \text { Atomic No. } \\ \text { TRANSITION ELEMENTS }\end{gathered}$										$\begin{aligned} & 10.811 \\ & >B \\ & > \end{aligned}$	$\begin{gathered} 12.011 \\ C \\ 6 \end{gathered}$	$\begin{gathered} 14.007 \\ \mathrm{~N} \\ 7 \end{gathered}$	$\begin{gathered} 15.999 \\ \mathrm{O} \\ 8 \end{gathered}$	$\begin{gathered} 18.998 \\ F \\ 9 \end{gathered}$	$\begin{gathered} 20.180 \\ -\mathrm{Ne} \\ 10 \end{gathered}$
3	$\begin{gathered} 22.990 \\ \mathrm{Na} \\ 11 \end{gathered}$	$\begin{gathered} 24: 305 \\ \mathrm{Mg} \\ 12 \end{gathered}$											$\begin{gathered} 26.982 \\ \text { Al } \\ 13 \end{gathered}$	$\begin{gathered} 28.086 \\ \mathrm{Si} \\ 14 \end{gathered}$	$\begin{gathered} 30.974 \\ P \\ 15 \end{gathered}$	$\begin{gathered} 32.06 \\ S \\ 16 \end{gathered}$	$\begin{gathered} 35.453 \\ \mathrm{Cl} \\ 17 \end{gathered}$	$\begin{gathered} 39.948 \\ \mathrm{Ar} \\ 18 \end{gathered}$
4	$\begin{gathered} 39.098 \\ \mathrm{~K} \\ 19 \\ \hline \end{gathered}$	$\begin{array}{\|c} 40.078 \\ \mathrm{Ca} \\ 20 \\ \hline \end{array}$	$\begin{gathered} 44.956 \\ S c \\ 21 \\ \hline \end{gathered}$	$\begin{gathered} 47.88 \\ 7 i \\ 22 \\ \hline \end{gathered}$	$\begin{gathered} 50.942 \\ V \\ 23 \end{gathered}$	$\begin{gathered} 51.996 \\ \mathrm{Cr} \\ 24 \\ \hline \end{gathered}$	54.938 Mn 25	$\begin{gathered} 55.847 \\ \mathrm{Fe} \\ 26 \\ \hline \end{gathered}$	$\begin{gathered} 58.933 \\ \mathrm{Co} \\ 27 \\ \hline \end{gathered}$	$\begin{gathered} 58: 69 \\ \mathrm{Ni} \\ 28 \\ \hline \end{gathered}$	63.546 Cu 29	$\begin{gathered} 65.39 . \\ \mathrm{Zn} \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 69.723 \\ \text { Ga } \\ 31 \\ \hline \end{gathered}$	$\begin{gathered} 72.61 \\ \mathrm{Ge} \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} 74.922 \\ \text { As } \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 78.96 \\ \mathrm{Sc} \\ 34 \\ \hline \end{gathered}$	$\begin{gathered} 79.904 \\ \mathrm{Br} \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 83.80 \\ \mathrm{Kr} \\ 36 \\ \hline \end{gathered}$
5	$\begin{gathered} 85.468 \\ \mathrm{Rb} \\ 37 \\ \hline \end{gathered}$	$\begin{gathered} 87.62 \\ \mathrm{Sr} \\ 38 \end{gathered}$	$\begin{gathered} 88.906 \\ Y \\ 39 \\ \hline \end{gathered}$	$\begin{gathered} 91.224 \\ \mathbb{Z r} \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 92.906 \\ \mathrm{Nb} \\ 4! \\ \hline \end{gathered}$	$\begin{gathered} 95.94 \\ \mathrm{Mo} \\ 42 \\ \hline \end{gathered}$	$\begin{gathered} 98.907 \\ \mathrm{Tc} \\ 43 \\ \hline \end{gathered}$	$\begin{gathered} 101: 07 \\ \mathrm{Ru} \\ 44 \\ \hline \end{gathered}$	$\begin{gathered} 102.9 \cdot 1 \\ \mathrm{Rh} \\ 45 \\ \hline \end{gathered}$	$\begin{gathered} 106.42 \\ \mathrm{Pd} \\ 46 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 107.87 \\ \mathrm{Ag} \\ 47 \\ \hline \end{array}$	$\begin{gathered} 112.41 \\ \mathrm{Cd} \\ 48 \\ \hline \end{gathered}$	$\begin{gathered} 114.82 \\ 1 n \\ 49 \\ \hline \end{gathered}$	$\begin{gathered} 118.71 \\ \mathrm{Sn} \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 121.75 \\ \mathrm{Sb} \\ 51 \\ \hline \end{gathered}$	$\begin{gathered} 127.60 \\ \mathrm{Tc} \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} 126.90 \\ 1 \\ 53 \\ \hline \end{gathered}$	$\begin{gathered} 131.29 \\ \mathrm{Xc} \\ 54 \\ \hline \end{gathered}$
6	$\begin{gathered} 132.91 \\ \mathrm{Cs} \\ 55 \\ \hline \end{gathered}$	$\begin{gathered} 137.33 \\ \mathrm{Ba} \\ 56 \end{gathered}$	$\begin{gathered} 138.91 \\ * \mathrm{La} \\ 57 \\ \hline \end{gathered}$	$\begin{gathered} 178.49 \\ \mathrm{H} 1 \\ 72 \end{gathered}$	$\begin{gathered} 180.95 \\ \mathrm{Ta} \\ 73 \\ \hline \end{gathered}$	$\begin{gathered} 183.85 \\ W \\ 74 \end{gathered}$	$\begin{gathered} 186.21 \\ \text { Re } \\ 75 \end{gathered}$	$\begin{gathered} 190.2 \\ \text { Os } \\ 76 \\ \hline \end{gathered}$	$\begin{gathered} 192.22 \\ \mathrm{Ir} \\ 77 \\ \hline \end{gathered}$	$\begin{gathered} 195.08 \\ \mathrm{Pt} \\ 78 \end{gathered}$	$\begin{gathered} 196.97 \\ \mathrm{Au} \\ 79 \\ \hline \end{gathered}$	$\begin{gathered} 200.59 \\ \mathrm{Hg} \\ 80 \end{gathered}$	$\begin{gathered} 204.38 \\ \mathrm{Tl} \\ 81 \\ \hline \end{gathered}$	$\begin{gathered} 207.2 \\ \mathrm{~Pb} \\ 82 \\ \hline \end{gathered}$	$\begin{gathered} 208.98 \\ B i \\ 83 \\ \hline \end{gathered}$	$\begin{gathered} (209) \\ P_{0} \\ 84 \\ \hline \end{gathered}$	$\begin{gathered} (210) \\ \text { At } \\ 85 \\ \hline \end{gathered}$	$\begin{gathered} (222) \\ R 11 \\ 86 \\ \hline \end{gathered}$
7	$\begin{aligned} & 223 \\ & \mathrm{Fr} \\ & 87 \end{aligned}$	$\begin{gathered} 226.03 \\ \mathrm{Ra} \\ 88 \end{gathered}$	$\begin{gathered} (227) \\ * * \mathrm{Ac} \\ 89 \end{gathered}$	$\begin{gathered} (261) \\ R i \\ 104 \end{gathered}$	$\begin{gathered} (262) \\ \mathrm{Ha} \\ 105 \end{gathered}$	$\begin{aligned} & (263) \\ & \text { Unh } \\ & 106 \end{aligned}$	$\begin{gathered} (262) \\ \text { Uns } \\ 107 . \end{gathered}$	$\begin{gathered} (265) \\ \text { Uno } \\ 108 \end{gathered}$	$\begin{aligned} & (266) \\ & \text { Une } \\ & 109 \end{aligned}$	(267) Uun 110	'							
*Lanthanide Scries				140.12 Co 53	$\begin{gathered} 140.91 \\ \mathbb{P r} \\ 59 \end{gathered}$	144.24 Nd 60	$\begin{gathered} (145) \\ \mathrm{Pm}^{21} \end{gathered}$	$\begin{gathered} \\ \hline 150.36 \\ \mathrm{Sm} \\ 62 \end{gathered}$	$\begin{gathered} 151.96 \\ \text { Eu } \\ 63 \end{gathered}$	157.25 Gd 64.	$\begin{gathered} 158.93 \\ \mathrm{~Tb} \\ 65 \end{gathered}$	$\begin{gathered} 162.50 \\ D y \\ 66 \\ \hline \end{gathered}$	164.93 Ho .67	$\begin{gathered} 167.26 \\ -\operatorname{Er} \\ 68 \end{gathered}$	168.93 Tm 69	$\begin{gathered} 173.04 \\ \mathrm{Yb} \\ 70 \end{gathered}$	174.97 Lu 71	1.
***Actinide Scries				$\begin{gathered} 232.04 \\ \text { Th } \\ 90 \end{gathered}$	$\begin{gathered} 231.04 \\ \mathbb{P a} \\ 91 \end{gathered}$	$\begin{gathered} 238.03 \\ U \\ 92 \end{gathered}$	$\begin{gathered} 237.05 \\ \mathrm{~Np} \\ 93 \end{gathered}$	(244) Pu 94	$\begin{gathered} (243) \\ \text { Am } \\ 95 \end{gathered}$	$\begin{gathered} (247) \\ \mathrm{Cm} \\ 96 \end{gathered}$	$\begin{gathered} (247) \\ \mathrm{Bk} \\ 97 \end{gathered}$	$\begin{gathered} (251) \\ \mathrm{Cf} \\ 98 \end{gathered}$	$\begin{gathered} (252) \\ \mathrm{Es} \\ 99 \end{gathered}$	$\begin{gathered} (257) \\ \mathrm{Fm} \\ 100 \end{gathered}$	$\begin{gathered} (258) \\ \mathrm{Md} \\ 101 \end{gathered}$	$\begin{gathered} (259) \\ \text { No } \\ 102 \end{gathered}$	$\begin{gathered} (260) \\ \mathbf{L r} \\ 103 \end{gathered}$	

() indicates the mass number of the isotope with the longest half-life.

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{Cmol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\lambda} \mathrm{k}$	$8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-4} \mathrm{~mol}^{-1}$ $6.2364 \times 10 \mathrm{~L} \mathrm{Torr} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$h=\mathrm{h} / 2 \pi$	$1.05457 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	$\mathrm{N}_{\text {A }}$	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	$\mathrm{m}_{\text {c }}$	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{0}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / c^{2} \mu_{0}$	$8.85419 \times 10^{-22} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-3}$
	$4 \pi \varepsilon_{0}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$\begin{aligned} & 4 \pi \times 10^{-7} \mathrm{~J} \mathrm{~s}^{2} \mathrm{C}^{-7} \mathrm{~m}^{-1} \\ & 4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3} \end{aligned}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} \dagger / 2 \mathrm{~m}_{\mathrm{e}}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{\mathrm{N}}=\mathrm{eh} / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	$g e$	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \dagger / m_{e} e^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} \mathrm{c} / 2 \mathrm{~h}$	- 7.29735×10^{-3}
Rydberg constant	$\mathrm{R}_{\mathrm{m}}=\mathrm{m}_{\mathrm{e}} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \varepsilon_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67259 \times 10^{-14} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

1 cal	4.184 joules (J)			1 erg			=	$1 \times 10^{-7} \mathrm{~J}$		
1 eV	$1.6022 \times 10^{-19} \mathrm{~J}$			$1 \mathrm{eV} / \mathrm{molecule}$				$96485 \mathrm{~kJ} \mathrm{~mol}^{-1}$		
Prefixes	f	p	n	μ	m	c	d	k	M	G
	fernto	pico	nano	micro	milli	centi	deci	kilo	mega	giga
	10^{-15}	10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10^{3}	10^{5}	10^{9}

