UNIVERSITY OF SWAZILAND
 SUPPLIMENTARY EXAMINATION ACADEMIC YEAR 2011/2012

TITLE OF PAPER: INTRODUCTORY INORGANIC CHEMISTRY

COURSE NUMBER:
TIME ALLOWED: INSTRUCTIONS:

C201
THREE (3) HOURS
THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

Question One

a) What is the total number of orbitals that are present in a shell of principal quantum number n ? (Hint: Begin with $n=1,2$ and 3 to recognize the pattern).
b) For each of the species given below, draw the Lewis structure. Use the Lewis structure to determine the overall geometry and the molecular shape of the species. Then determine the hybridization scheme for the central atom in the molecule.
i) $\mathrm{NO}_{3}{ }^{-}$
ii) $\quad \mathrm{SCl}_{4}$
iii) XeOF_{4}
c) Describe the nature of π bonding and structure of $\mathrm{P}\left(\mathrm{SiH}_{3}\right)_{3}$ molecule. Compare with the nature of bonding in $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$.

Question Two

a) The Schrodinger equation may be written (in compact form) as

$$
(\mathrm{KE}+\mathrm{V}) \psi=\mathrm{E} \psi
$$

What do the terms $\mathrm{KE}, \mathrm{V}, \psi$ and E stand for?

[4]

b) Give the quantum numbers that are obtained from solving the Schrodinger equation.
c) In the hydrogen atom the 3 s and 3 p orbitals have identical energies, but in the chlorine atom the 3 s orbital lies at a considerably lower energy. Explain.

[5]

d) The wave function of a certain orbital is roughly given by

$$
\psi=(6-\mathrm{b}) \mathrm{be}-\mathrm{b} / 3 \mathrm{cos} \theta
$$

where $\mathrm{b}=\mathrm{zr} / \mathrm{a}_{0}$ and a_{0} is the Bohr radius.
Using the above function answer the following questions.
i) Pick out the radial part and the angular part of the function.
ii) Draw a rough sketch of the plot of the angular part of the function. Show how you figure out the shape of your plots. [Hint: Evaluate the angular function along the $+\mathrm{x},-\mathrm{x},+\mathrm{y},-\mathrm{y},+\mathrm{z}$ and -z directions].

Question Three

a) For each of the orbitals $1 \mathrm{~s}, 2 \mathrm{p}_{\mathrm{y}}$ and $3 \mathrm{~d} z^{2}$ sketch
i) the radial function $\mathrm{R}(\mathrm{r})$ [6]
ii) The angular function [7]
b) Using Slater's rules, calculate $Z_{\text {eff }}$ for the valence electron in i)Ca and ii) Sr. Electron configurations of Ca and Sr are $[\mathrm{Ar}] 4 \mathrm{~s}^{2}$ and $[\mathrm{Kr}] 5 \mathrm{~s}^{2}$ respectively. The first ionization potentials of Ca and Sr are 6.113 and $5.695 \mathrm{eV}\left(1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}\right)$ respectively. Do their ionization energies seem to match the calculated effective nuclear charge values? Explain.

Question Four.

a) Illustrate, with the help of suitable orbital diagrams, how the LCAO approximation gives rise to bonding and anti-bonding orbitals for the following interactions:
i) an \mathbf{s} orbital with an \mathbf{s} orbital
ii) a \mathbf{p} orbital with a \mathbf{p} orbital to give π mo's
[Note that energy level diagrams are not required]

[7]

b) Using valence orbitals only, draw the molecular orbital energy-level diagram for the diatomic molecule B_{2}. The electron configuration of B is $[H e] 2 s^{2} 2 p^{1}$. Calculate the bond order of the molecule.

[8]

c) Use the energy-level diagram you have drawn in b) above to write an electron configuration for each of the species: i) C_{2} ii) $\mathrm{C}_{2}{ }^{2-}$ iii) $\mathrm{C}_{2}{ }^{8-}$. Which of these species do you expect to have any chance of existence? Give an explanation for your answer.

[10]

Question Five

(a) Sketch the Born-Haber cycle for the formation of a salt, $\mathrm{MX}_{2}(\mathrm{~s})$, from a metal, $\mathrm{M}(\mathrm{s})$, and a non-metal, $\mathrm{X}_{2}(\mathrm{~g})$
b) Calculate the lattice energy of calcium chloride, $\mathrm{CaCl}_{2}(\mathrm{~s})$, that is obtained by reacting $\mathrm{Ca}(\mathrm{s})$ with $\mathrm{Cl}_{2}(\mathrm{~g})$, using the following data:

Standard enthalpy of formation of $\mathrm{CaCl}_{2}(\mathrm{~s})$	-794 kJmol^{-1}
Heat of sublimation of $\mathrm{Ca}(\mathrm{s})$-------------------	$+193 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Dissociation energy of $\mathrm{Cl}_{2}(\mathrm{~g})$	$+242 \mathrm{kJmol}^{-1}$
Ionization energy ($\mathrm{I}_{1}+\mathrm{I}_{2}$) of $\mathrm{Ca}(\mathrm{g})$ to $\mathrm{Ca}^{2+}(\mathrm{g})-\ldots-{ }^{-}-{ }^{-}$	$+1725 \mathrm{kJmol}^{-1}$
	$-347 \mathrm{kJmol}^{-1}$

c) Rationalise the following:
i) Ionic radii of the group II elements are smaller than their corresponding atomic radii.
[2]
ii) Compounds of Be are much more covalent than those of the other group II counterparts.
iii) PCl_{5} gas is known whereas NCl_{5} is not.

Question Six

a) A group 2 metal X occurs naturally in great abundance as the carbonate. Metal X reacts with cold water forming compound D , which is a strong base. Aqueous solutions of D are used in qualitative tests for $\mathrm{CO}_{2} . \mathrm{X}$ combines with hydrogen gas, $\mathrm{H}_{2}(\mathrm{~g})$, to give a saline hydride, XH_{2}, that is used as a drying agent. Identify X and D . Write the equations for the reaction of X with $\mathrm{H}_{2} \mathrm{O}$ and for the reaction of the hydride, XH_{2}, with $\mathrm{H}_{2} \mathrm{O}$. Write the equation of the reaction that takes place when an aqueous solution of D is used to test for CO_{2}.

[10]

b) Consider the compounds $\mathrm{BaSO}_{4}, \mathrm{BCl}_{3}, \mathrm{PCl}_{3}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{SrH}_{2}, \mathrm{SiCl}_{4}, \mathrm{Ca}^{2}\left(\mathrm{NO}_{3}\right)_{2}$ and KCl . Indicate which ones of the above compounds (when mixed with water)
i) are sparingly soluble
ii) are soluble without reaction
iii) react with water

For each of the species which react with water, write the balanced reaction equation involved.

[9]

c) For each of the compounds given below, indicate whether the compound will produce an acidic, neutral or a basic solution when it is dissolved in water. Give the formulas of the major species that are formed upon dissolution of the compound.
i) $\quad \mathrm{Na}_{2} \mathrm{O}$
ii) $\quad \mathrm{NaCl}$
iii) SO_{3}

Useful relations

```
At \(298.15 \mathrm{~K}_{\mathrm{r}} R T=2.4790 \mathrm{~kJ} \mathrm{~mol}^{-1}\) and \(R T / F=25.693 \mathrm{mV}\)
\(1 \mathrm{~atm}=101.325 \mathrm{kPa}=760 \mathrm{Torr}\) (exactly)
\(1 \mathrm{bar}=10^{5} \mathrm{~Pa}\)
\(1 \mathrm{eV}=1.60218 \times 10^{-19} \mathrm{~J}=96.485 \mathrm{~kJ} \mathrm{~mol}^{-1}=8065.5 \mathrm{~cm}^{-1}\).
\(1 \mathrm{~cm}^{-1}=1.986 \times 10^{-23} \mathrm{~J}=11.96 \mathrm{~J} \mathrm{~mol}^{-1}=0.1240 \mathrm{meV}\)
\(1 \mathrm{cal}=4.184 \mathrm{~J}\) (exactly)
1 D (debye) \(=3.33564 \times 10^{-30} \mathrm{C} \mathrm{m}\)
\(1 \mathrm{~T}=10^{4} \mathrm{G}\)
\(1 \AA\) (ángström) \(=100 \mathrm{pm}\)
\(1 \mathrm{M}=1 \mathrm{~mol} \mathrm{dm}^{-3}\)
```

General data and fundamental constants

Quantity	Symbol	Value
* Speed of light	c	$2.997925 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
* Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
- Faraday constant	$F=e N_{\text {A }}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$\begin{aligned} & 1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\ & 8.6174 \times 10^{-5} \mathrm{eV} \mathrm{~K}^{-1} \end{aligned}$
* Gas constant	$R=k N_{\text {A }}$	$\begin{aligned} & 8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & 8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$
* Planck constant	$\begin{aligned} & h \\ & h=h / 2 \pi \end{aligned}$	$\begin{aligned} & 6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\ & 1.05457 \times 10^{-34} \mathrm{~J} \mathrm{~s} \end{aligned}$
* Avogadro constant	$N_{\text {A }}$	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{~kg}$
* Mass of electron	m_{e}	$9.10939 \times 10^{-31} \mathrm{~kg}$
* Vacuum permittivity	$\begin{aligned} & \varepsilon_{0} \\ & 4 \pi \varepsilon_{0} \end{aligned}$	$\begin{aligned} & 8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1} \\ & 1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1} \end{aligned}$
Bohr magneton	$\mu_{B}=e \hbar / 2 m_{e}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
* Bohr radius	$a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / m_{\mathrm{e}} e^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
* Rydberg constant	$R_{\infty}=m_{e} e^{4} / 8 h^{3} c \varepsilon_{0}^{2}$	$1.09737 \times 10^{5} \mathrm{~cm}^{-1}=1.09737 \times 10^{7} \mathrm{~m}^{-1}$

Prefixes

\mathbf{f}	\boldsymbol{p}	n	$\boldsymbol{\mu}$	\mathbf{m}	\mathbf{c}	d	k	M	G
femto	pico	nano	micro	milli	centi	deci	kilo	mega	giga
10^{-15}	10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10^{3}	10^{6}	10^{9}

The Periodic Table

folock

