UNIVERSITY OF SWAZILAND

FINAL EXAMINATION

ACADEMIC YEAR 2011/2012

```
TITLE OF PAPER: INTRODUCTORY ORGANIC CHEMISTRY
COURSE NUMBER: C203
TIME ALLOWED: THREE (3) HOURS
INSTRUCTIONS: THERE ARE SIX (6) QUESTIONS. ANSWER
ANY FOUR (4) QUESTIONS. EACH QUESTION
IS WORTH 25 MARKS.
```

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

Question One

a) Consider the substances shown in the following acid-base reactions. Complete each equation and expand the structural formulas to show all the unshared electron pairs. Identify the acid, base, conjugate acid and conjugate base.
i) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-}+\mathrm{CH}_{3} \mathrm{SH} \rightleftharpoons$
ii) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2} \rightleftharpoons$
b) Squaric acid is unusually acidic for a compound containing only C, H and O atoms. The structure of the molecule is sketched below. The molecule has two acidic protons so that it has two dissociation constants, K_{al} and $\mathrm{K}_{\mathrm{a} 2}$. Consequently in the presence of a base, the ions $\left[\mathrm{C}_{4} \mathrm{O}_{4} \mathrm{H}\right]^{-}$and $\left[\mathrm{C}_{4} \mathrm{O}_{4}\right]^{2-}$ are formed.

i) Write a dot structure for each of the two ions
ii) Using curved arrows, write two resonance structures to show how each of the two ions is resonance stabilized
b) Complete the following reactions:

Q.1.d) What is the absolute configuration (R or S) of the compound represented by the Fisher projection shown below.

Question Two

a) Name each of the following:
i)

ii) $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$
iii) $\quad \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{Br}_{2}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Br}_{2}\right) \mathrm{CH}_{3}$
iv)

b) Photochemical chlorination of 2,2,4-trimethylpentane (whose structure is sketched below) gives four isomeric monochlorides. Write structural formulas for these four isomers.

c) Cyclopropyl chloride has been prepared by the free radical chlorination of cyclopropane. The structure of cyclopropane is sketched below. Write a stepwise mechanism for this reaction. Your answer should include initiation, propagation and two termination reactions.

d) Sight down the C-2-C-3 bond and draw Newman projection formulas for the
i) most stable conformation of 2,2-dimethylbutane
ii) two most stable conformations of 2,3-dimethylbutane

Question Three

a) Write structural formulas for six of the isomeric aldehydes and ketones that have the molecular formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$. For structures, you may use any one of line, condensed, or dash formulas.
b) Predict the product of the reaction of cyclopentanone with each of the following:
i) Lithium aluminium hydride followed by water

ii) $\mathrm{CH}_{3} \mathrm{MgI}$, followed by dilute acid

iii) $\mathrm{HC} \equiv \mathrm{CNa}^{+}$, followed by dilute acid

iv) Aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$, in the presence of a little acid

c) Write enol form of each of the following:
i) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$
ii)

d) Write the structure of the major product formed in each of the following reactions:

Question Four

a) Structures of amino acids are represented by the general structure shown below.

Write line structures for the following alpha amino acids:
i) Valine, $R=$ isopropyl
ii) Leucine, $R=$ isobutyl
iii) Isoleucine, $R=$ sec-butyl
iv) Aspartic acid, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{X}$, where X is the carboxylic group.
b) Write a stepwise mechanism for the formation of oxane (whose structure is shown below) from 1,5-pentanediol, $\mathrm{HOCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{OH}$. The reaction is aci-catalysed.

c) Write equations showing how 1-phenylethanol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ could be prepared from each of the following starting materials:
i) Bromobenzene
ii) Benzaldehyde
d) Write the structure of the ester from each of the following:

Question Five

a) In each of the following pairs of compounds, one is chiral and the other one is achiral. Identify each compound as chiral or achiral,
i)

and

ii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Br}$ and $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}=\mathrm{CH}_{2}$
iii)
 and

b) Write equations (not necessarily balanced) showing how 2-phenyl, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, could be prepared from each of the following materials:
i) Phenylmagnesium bromide

ii) Styrene

c) Give a dash formula for the carbocation intermediate that leads to the major product in the reaction of hydrogen chloride with each of the compounds given below. Briefly explain your answer.
i) 2-methyl-2-butene, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
ii) 2-methyl-1-butene, $\quad \mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CHCH}_{2} \mathrm{CH}_{3}$
iii) Cis-2-butene, $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$
iv) $\quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$
d) For each of the following reactions, identify the missing substances $\mathbf{A}, \mathbf{B}, \mathbf{B}$ and \mathbf{C} and write its formula.

Question Six

a) Give the IUPAC name for each of the following
i) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
ii) The cyclic alcohol,

iii) A phenol of structure,

b) Write chemical equations for a reaction that takes place between each of the following pairs of reactants.
i) 2-butanol, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$, and potassium dichromate, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
ii) 1-butene, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ and water, $\mathrm{H}_{2} \mathrm{O}$, in the presence of a catalytic amount of acid
iii) 1,2-cyclopentanediol,
 and periodic acid, HIO_{4}.
c) Consider the reaction of cyclohexanol, $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}$, with hydrogen bromide, HBr , to form bromocyclohexane, $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Br}$ and water. Write chemical equations for the steps involved in the reaction.
d) Which one of the two species, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$or $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{C}^{+}$would you expect to be more stable? Explain your answer.

The Periodic Table

rblock

Useful relations

At $298.15 \mathrm{~K}, R T=2.4790 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $R T / F=25.693 \mathrm{mV}$
$1 \mathrm{~atm}=101.325 \mathrm{kPa}=760$ Torr (exactly)
$1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
$1 \mathrm{eV}=1.60218 \times 10^{-19} \mathrm{~J}=96.485 \mathrm{~kJ} \mathrm{~mol}^{-1}=8065.5 \mathrm{~cm}^{-1}$
$1 \mathrm{~cm}^{-1}=1.986 \times 10^{-23} \mathrm{~J}=11.96 \mathrm{~J} \mathrm{~mol}{ }^{-1}=0.1240 \mathrm{meV}$
$1 \mathrm{cal}=4.184 \mathrm{~J}$ (exactiy)
1 D (debye) $=3.33564 \times 10^{-30} \mathrm{Cm}$
$1 \mathrm{~T}=10^{4} \mathrm{G}$
$1 \AA$ (angström) $=100 \mathrm{pm}$
$1 \mathrm{M}=1 \mathrm{~mol} \mathrm{dm}^{-3}$

General data and fundamental constants

Cumantity	Symbol	Value
* Speed of light	c	$2.997925 \times 10^{6} \mathrm{~ms} \mathrm{~s}^{-1}$
* Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
- Faraday constant	$F=e N_{\text {A }}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltamann constant	k	$\begin{aligned} & 1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\ & 8.6174 \times 10^{-5} \mathrm{eV} \mathrm{~K}^{-1} \end{aligned}$
* Gas constant	$R=k N_{A}$	$\begin{aligned} & 8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & 8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{am} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$
* Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J}_{5}$
	$n=h / 2 \pi$	$1.05457 \times 10^{-34} \mathrm{Js}$
* Avogadro constant	$N_{\text {A }}$	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass unit	4	$1.66054 \times 10^{-27} \mathrm{~kg}$
* Mass of electron	m_{e}	$9.10939 \times 10^{-31} \mathrm{~kg}$
* Vacuum permittivity	$\begin{aligned} & \varepsilon_{0} \\ & 4 \pi \varepsilon_{0} \end{aligned}$	$\begin{aligned} & 8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{c}^{2} \mathrm{~m}^{-1} \\ & 1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1} \end{aligned}$
Bohr magneton	$\mu_{\mathrm{B}}=e n / 2 m_{\text {c }}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
* Bohr radius	$a_{0}=4 \pi \varepsilon_{0} h^{2} / m_{2} 2^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
* Rydberg constant	$R_{\infty}=m_{e} e^{4} / 8 h^{3} c b_{0}^{3}$	$1.09737 \times 10^{5} \mathrm{~cm}^{-1}=1.09737 \times$

Prefixes

f	p	n	μ	m	c	d	d	d	G
femto	pico	nano	micro	milli	centi	deci	kilo	mega	giga
10^{-15}	10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10^{3}	10^{6}	10^{9}

