UNIVERSITY OF SWAZILAND

~ *

2.4

FINAL EXAMINATION 2011/2012

TITLE OF PAPER:	ADVANCED INORGANIC CHEMISTRY
COURSE NUMBER:	C401
TIME ALLOWED:	THREE (3) HOURS
INSTRUCTIONS:	THERE ARE SIX (6) QUESTIONS. ANSWER <u>ANY FOUR (4)</u> QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

,

.

QUESTION ONE

ŝ

- (a) (i) Assuming that the 18-electron rule applies, identify the second-row transition metal:
 - (1) $[(\eta^3 C_3 Ph_3)(\eta^4 C_4 H_4)M(NH_3)_2]^+$
 - (2) $[(\eta^5-C_5H_5)M(CO)_3]_2$ (assume single M–M bond)
 - (3) $M(CO)_4Br(\equiv CPh)$
 - (ii) What charge, z, would be necessary for $[(\eta^6-C_6H_6)_2Ru]^z$ to obey the 18electron rule? [4]
- (b) If CO is a two electron donor and NO is a three electron donor, what are the possible formulae of the stable 18 electron Cr^0 and Fe^0 compounds containing just NO and/or CO? [5]
- (c) Identify the Lewis acids and bases in the following reactions
 - (i) $BrF_3 + F^- \rightarrow BrF_4^-$

(ii)
$$KH + H_2O \rightarrow KOH + H_2$$
 [4]

(d) (i) Complex A, $Ir(PPh_3)_2(Cl)_2(COCH_2Ph) [v(CO) = 1670 \text{ cm}^{-1}]$ rearranges cleanly to the isomeric compound B $[v(CO) = 2040 \text{ cm}^{-1}]$ at 30 °C in benzene. Draw a possible structure for B.

$$Ir(PPh_3)_2(Cl)_2(COCH_2Ph) \xrightarrow{C_{eH_4}/30^{\circ}C} B$$
[4]

- (ii) Suggest products in the following reactions:
 - (1) excess FeCl₃ with $(\eta^5-C_5H_5)_2$ Fe
 - (2) $(\eta^5 C_5 H_5)_2$ Fe with PhC(O)Cl in the presence of AlCl₃
 - (3) $(\eta^5 C_5 H_5)_2$ Fe with toluene in the presence of Al and AlCl₃
 - (4) $(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}Cl$ with Na[Co(CO)₄] [8]

QUESTION TWO

- (a) Explain the following:
 - (i) Transition metal ions are coloured due to d-d electronic transitions. Although f-block elements do not have unpaired electrons in d orbitals, yet their ions are coloured.
 - (ii) The separation of lanthanides and actinides is very difficult.
 - (iii) During ion-exchange chromatography lutetium (Lu) is separated first and lanthanum (La) the last. [6]
- (b) Of the metals Cd, Rb, Cr, Pb, Sr and Pd, which might be expected to be found in aluminosilicate minerals (silicate oxo anions) and which in sulphides? Justify your answer.

- (c) The reaction of the tetrahedral cluster {(Me₃Si)₃C}₄Ga₄ with I₂ in boiling hexane results in the formation of {(Me₃Si)₃CGaI}₂ and {(Me₃Si)₃CGaI₂}₂. In each compound there is only one Ga environment. Suggest structures for these compounds and state the oxidation state of Ga in the starting material and products. [5]
- (d) Predict the structures of

- (e) (i) Determine the ground state term symbol for Tm^{3+} . (ii) Calculate the *g*-value expected for Tm^{3+} .
 - (iii) Hence, calculate the effective magnetic moment, μ_{eff} , of Tm³⁺. [5]

QUESTION THREE

- (a) Sketch the structures of each of the following molecules, clearly indicating the ways in which the ligands are attached to the metal.
 - (i) (C_8H_8)]Mo(CO)₃
 - (ii) $(C_5H_5)_2Fe(CO)_2$

reaction:

[4]

[6]

(b) How are the following compounds made?

(i)	Fe(CO) ₅
(-)	

- (ii) $Co_2(CO)_8$ (iii) $Mn_2(CO)_{10}$
- (i) Describe the <u>three</u> classes of aprotic solvents, citing examples of each.
 (ii) Hydrosilation is a useful reaction that converts an alkene into a silylalkane. Predict the product of the following general hydrosilation

R'--CH=CH₂ + H-SiR₃ → where R = H, alkyl, aryl

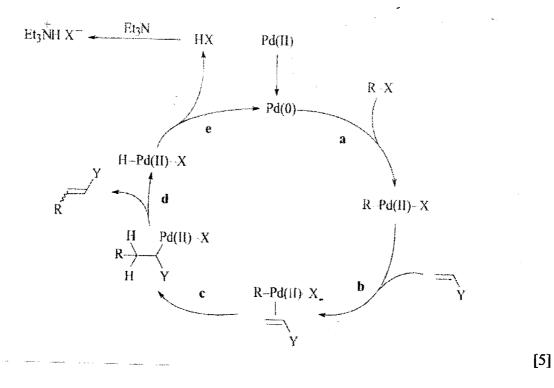
- (iii) SbCl₃ may be used as a non-aqueous solvent above its melting point.
 Suggest a possible self-ionization process for this solvent. [9]
- (d)

(c)

- (i) For the following , propose examples of isolobal organometallic
 - fragments:
 - (1) A fragment isolobal with CH_2^+
 - (2) A fragment isolobal with CH^{-}
 - (3) A fragment isolobal with CH_3
- (ii) Give organic fragments isolobal with each of the following:
 - (1) $(\eta^{5}-C_{5}H_{5})Ni$
 - (2) $(\eta^6 C_6 H_6) Cr(CO)_2$
 - (3) $[Fe(CO)_2(PPh_3)]^-$

[6]

QUESTION FOUR


- (a) (i) Give a description of the bonding in $[Ir(CO)_6]^{3+}$ and compare it with that in the isoelectronic compound W(CO)_6.
 - (ii) How would you expect the IR spectra of these species to differ in the carbonyl stretching region? [6]
- (b) Suggest reasons for the following observations:
 - (i) Although Pd(II) complexes with monodentate O-donor ligands are not as plentiful as those with P-, S- and As-donor ligands, Pd(II) forms many stable complexes with bidentate O,O'-donor ligands.
 - (ii) EDTA⁴⁻ forms very stable complexes with first-row *d*-block metal ions M^{2+} (e.g. log K = 18.62 for the complex with Ni²⁺); where the M³⁺ ion is accessible, complexes between M³⁺ and EDTA⁴⁻ are more stable than between the corresponding M²⁺ and EDTA⁴⁻ (e.g. log K for the complex Cr²⁺ is 13.6, and for Cr³⁺ is 23.4). [4]
- (c) (i) Explain why the spin-only formula cannot be used to describe the magnetic properties of lanthanide (Ln) ions?
 - (ii) Suggest (giving equations) how the following species behave in H_2SO_4 : (1) H_2O
 - (1) H_2O (2) NH_3
 - (3) HCO₂H (given that it decomposes) [8]
- (d) What type of reaction is the following, and by what mechanism does it occur? $Mn(CO)_5CH_3 + CO \rightarrow Mn(CO)_5(COCH_3)$ [4]
- (e) Using the cluster valence electron count (CVE) suggest the metal cage framework adopted by each of the following clusters:
 - (i) $Os_5(CO)_{16}$
 - (ii) $HRu_6(CO)_{17}B$
 - (iii) $Co_3(CO)_9Ni(\eta^5-C_5H_5)$

[3]

QUESTION FIVE

- (a) Using Polyhedral Skeletal Electron Pair Theory (PSEPT) predict the metal core structures of the following clusters:
 - (i) $[H_2Ru_6(CO)_{18}]$
 - (ii) $[Os_6(CO)_{18}]$
 - (ii) $[H_2Ru_8(CO)_{21}]^{2-}$
- (b) Below is the catalytic cycle associated with the Heck olefination reaction. For each step marked with a letter, attach the name of one of the fundamental types of organometallic reactions (e.g., nucleophilic abstraction or ligand substitution).

[9]

(c) Explain why the following compounds <u>do not</u> undergo β -elimination:

- (i) (ii) $[Ti(CH_2Ph)_4]$ [6]
- (d) (i) Complete the following scheme, inserting the missing nuclides and mode of decay:

 $\overset{238}{_{92}}U \xrightarrow{\overset{1}{_{0}n}} ? \xrightarrow{-\beta} ? \xrightarrow{?} \overset{239}{_{94}}Pu$

- (ii) Explain what is meant by the term 'coordinatively unsaturated'.
- (iii) What features of $[Rh(CO)_2I_2]^-$ allow it to act as an active catalyst? [5]

QUESTION SIX

- (a) When dichlorodimethylsilane, (CH₃)₂SiCl₂, is treated with alkali metals in tetrahydrofuran, THF, the main product X is a crystalline solid of composition, C, 41.4%; H, 10.3%; Si, 48.3%, and molecular weight 290. The proton NMR spectrum of X measured in benzene consists of a single band. Suggest structure for X. [4]
- (b) M is a First Transition Series element. It forms a carbonyl F of empirical formula M(CO)₅ which reacts with sodium amalgam, Na/Hg in tetrahydrofuran, THF to give a solution G. Treatment of G with 3-chloro-1-propene, CH₂=CHCH₂Cl gives a compound H of molecular formula C₈H₅H₅M. The infrared spectrum of H shows carbonyl stretching bands between 2110 and 2004 cm⁻¹, the ¹H NMR spectrum of H indicates protons in *four* chemically distinct environments. On heating H to 100 °C one mole of carbon monoxide, CO is eliminated to give I,

 $C_7H_5O_4M$ [v_{CO} between 2110 and 1950 cm⁻¹]. The ¹H NMR spectrum of I indicates protons in *three* chemically distinct environments.

- (i) Identify the metal M.
- (ii) Propose and draw structures for the compounds F, H and I and for the species present in solution G.
- (iii) Interpret the ¹H NMR features of H and I.
- (iv) Discuss the bonding of the organic ligand to M in compound I. [8]
- (c) It is believed that the catalytic role of organometallic complexes in effecting organic reactions may be understood in terms of successive steps generating 16and 18-electron complexes from 18- and 16-electron molecules, respectively. Thus, the "hydroformylation" of olefins below is catalysed by HCo(CO)₄ derived from Co₂(CO)₈.

$$CH_2 = CHR + H_2 + CO \rightarrow RCH_2CH_2CHO$$

- (i) Outline the steps of the catalytic cycle.
- (ii) Identify each cobalt-containing species as a 16- or 18-electron molecule
- (iii) Kinetic studies indicate that the hydroformylation reaction is enhanced by an increase in H₂ pressure and inhibited by an increase in CO pressure. How is the mechanism in your cycle above consistent with these observations? [10]
- (d) The iron atom in Fe(CO)₅ is a weak Lewis base. However, replacement of a CO ligand with a phosphine to give, for example, Fe(CO)₄(PPh₃) causes the metal basicity to be enhanced. Why should this be the case? [3]

PERIODIC TABLE OF ELEMENTS

		. *						G	ROUPS	5								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB	- 4 99	B	IIB	IIIA	ΓVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1						•		l									4.003 He 2
2	6.941 Li 3	9.012 Be 4				. .					Syr	ic mass nbol nic No.	B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20,180 Ne 10
3	22.990 Na 11	24.305 Mg 12				TRAN	SITION	I ELEM	ENTS		•		26.982 Al 13	28.086 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4 '	39.098 K 19	40.078 Ca 20	44.956 Sc 21	47.88 Ti 22	50.942 V 23	51.996 Cr 24	54.938 Mn 25	55.847 Fe 26	58.933 Co 27	58.69 Ni 28	63.546 Cu 29	65.39 Zn 30	69.723 Ga 31	72.61 Ge 32	74.922 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.468 Rb 37	87.62 Sr 38	88.906 Y 39	91.224 Zr 40	92.906 Nb 41	95.94 Mo 42	98.907. Tc 43	101.07 Ru: 44	102.91 Rh 45	106.42 Pđ 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.71 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.29 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138,91 *La 57	178.49 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.2 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Ti 81	207.2 Pb 82	208.98 Bi 83	(209) Po 84	(210) At 85	(222) Rn 86
7	223 Fr 87	226.03 Ra 88	(227) **Ac 89	(261) Rf 104	(262) Ha 105	(263) Unh 106	(262) Uns 107	(265) Uno 108	(266) Une 109	(267) Uun 110								,
		le Series	,	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	(145) Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 164	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70.	174.97 Lu 71	,
**/	Actinide	e Series		232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	(244) Pu 94	(243) Am 95	(247) Cm 96	(247) Bk 97	(251) Cf 98	(252) Es 99	(257) Fm 100	(258) Md 101	(259) No 102	(260) Lr 103	

() indicates the mass number of the isotope with the longest half-life.

2