UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/12

TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME:

ŧ

1

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE **SIX** QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER **ANY FOUR** QUESTIONS.

A DATA SHEET AND A PERIODIC TABLE ARE ATTACHED

GRAPH PAPER IS PROVIDED

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question1(25 marks)

The reaction rate as a function of initial reactant pressures was investigated for (a) the reaction 2 NO(g) + 2 H₂(g) \rightarrow N₂(g) + 2 H₂O(g) and the following data were obtained:

Run	$P_0 H_2/(kPa)$	P ₀ NO/(kPa)	Rate/(kPa s ⁻¹)
1	53.3	40.0	0.137
2	53.3	20.3	0.033
3	38.5	53.3	0.213
4	19.6	53.3	0.105

Determine the rate law including the value of the rate constant

[5]

[5]

- In the stratosphere, the rate constant for the conversion of ozone to molecular **(b)** oxygen by atomic chlorine, $Cl + O_3 \rightarrow ClO + O$, is $k = 1.7 \times 10^{10} \text{ M}^{-1} \text{s}^{-1} \text{e}^{-260 \text{K/T}}$. (i) What is the rate of this reaction at 20 km where $[Cl] = 5 \times 10^{-17} \text{ M}$ and $[O_3] = 8 \times 10^{-9} \text{ M}$ and T = 220 K?

 - The concentrations at 45 km are $[Cl] = 3 \times 10^{-15} \text{ M}$ and $[O_3] = 8 \times 10^{-11}$ (ii) M and T = 270 K, what is the reaction rate at this attitude? [6]
- The unimolecular decomposition of urea in aqueous solution is measured at (c) two different temperatures and the following data are observed;

Trial no.	Temperature/ (°C)	Rate constant $k/(s^{-1})$				
1	60.0	1.20×10^{-7}				
2	71.5	5 4.40 x 10 ⁻⁷				
		A .1.1 .1				

Determine the Arrhenius parameters for this reaction.

The pK_a of NH_4^+ is 9.25 at 25 °C. The rate constant at 25 °C for the reaction of (d) NH_4^+ and OH^- to form aqueous ammonia is 4.0 x 10^{10} dm³ mol⁻¹s⁻¹.

- Calculate the rate constant for proton transfer to NH₃. (i)
- (ii) What relaxation time would be observed if a temperature jump were applied to a solution of 0.15 M NH₃(aq) at 25 °C. Useful data: $Kw = 1.0 \times 10^{-14}$ and $Kw = K_a K_b$ [9]

Question 2(25 marks)

- (a) Consider the following reaction: $H_2(g) + 2AgCl(s) \rightarrow 2HCl(aq) + 2Ag(s)$
 - (i) Devise a cell in which the above reaction is the cell reaction [2]

[2]

- (ii) Write the Nernst equation for the cell in (i)
- (iii) The emf for the above cell was 0.3524 V when the molality of HCl was 0.100 mol/kg and the hydrogen pressure was 1 bar. Calculate the activity and mean activity coefficient of the HCl assuming hydrogen is a perfect gas. [5]
- (iv) Calculate the per cent error in the mean activity coefficient if the Debye-Huckel limiting is used to calculate it. (log $\gamma_{\pm} = -|z_{\pm}z_{-}|AI^{\frac{1}{2}}$, A=0.509 at 25 °C) [4]

(b) For the cell: Pt Ag(s) AgCl(s) HCl(aq) $Hg_2Cl_2(s)$ Hg(l) Pt; dF^{θ}

 $\frac{dE^{\theta}}{dT} = 0.338 mV / K \text{ at } 25 \text{ °C and } 1 \text{ bar.}$

(i)Write the cell reaction[2](ii)Calculate $\Delta_r G^{\theta}$, $\Delta_r H^{\theta}$ and $\Delta_r S^{\theta}$ for the cell reaction[10]

Table 1: Standard potentials at 298 K

Reduction half reaction	E ^e /V
$AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}(aq)$ $2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(aq)$ $HgcCl_{2}(s) + 2e^{-} \rightarrow 2Hg(l) + 2Cl^{-}(aq)$	+0.22 0, by definition

Question 3(25 marks)

- (a) When a mixture of H₂ and O₂ is irradiated with light of wavelength 253.7 nm no reaction is observed. When a small amount of mercury vapour is added to the mixture and the mixture irradiated with 253.7 nm light, a rapid formation of water is observed. Given that the bond dissociation energies for O₂ and H₂ are 498 and 436 kJ/mol, respectively, account for the above observations.
- (b) The quantum yield is 2 for the photolysis of gaseous HI to I₂ and H₂ by light of 253.7 nm wavelength. Calculate the number of moles HI that will be decomposed if 300 J of light of this wavelength is absorbed [5]

- (c) An enzyme catalysed reaction conversion of a substrate at 25 °C has Michaelis constant of 0.042 mol L⁻¹. The rate of the reaction is 2.45 x 10⁻⁴ mol L⁻¹ s⁻¹ when the substrate concentration is 0.890 mol/L. What is the maximum velocity of this enzmolysis. [5]
- (d) Consider the following reaction of methane with molecular chlorine: $CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$

for which the following mechanism has been proposed

$$Cl_{2} \xrightarrow{k_{1}} 2Cl^{\bullet}$$

$$Cl^{\bullet} + CH_{4} \xrightarrow{k_{2}} HCl + CH_{3}^{\bullet}$$

$$CH_{3}^{\bullet} + Cl_{2} \xrightarrow{k_{3}} CH_{3}Cl + Cl^{\bullet}$$

$$Cl^{\bullet} + Cl^{\bullet} \xrightarrow{k_{4}} Cl_{2}$$

Show that the mechanism is consistent with the experimental rate law

$$\frac{d[HCl]}{dt} = k[CH_4][Cl_2]^{1/2}$$
[7]

Question 4 (25 marks)

(a) The charge of Mg^{2+} is twice that of Na⁺, and from the equation

 $u = \frac{ze}{6\pi\eta a}$

one might therefore expect $Mg^{2+}(aq)$ to have a much greater mobility than $Na^{+}(aq)$. Actually, these ions have similar mobilities. Explain why? [3]

(b) Derive the Ostwald dilution law for a weak electrolyte (all steps must be clearly shown).

$$\frac{1}{\Lambda_m} = \frac{1}{\Lambda_m^0} + \frac{\Lambda_m c}{K_a (\Lambda_m^0)^2} \qquad \text{Ostwald dilution law} \qquad [4]$$

(c) The following data were obtained for a weak electrolyte HA in ethanol at 25° C:

Concentration c/ mol dm ⁻³	1.566 x 10 ⁻⁴	2.600 x 10 ⁻⁴	6.219 x 10 ⁻⁴	10.441 x 10 ⁻⁴
Conductivity κ/ S cm ⁻¹	1.788 x 10 ⁻⁶	2.418 x 10 ⁻⁶	4.009 x 10 ⁻⁶	5.336 x 10 ⁻⁶

(i) Confirm that these values are in accordance with the Ostwald dilution law.

(ii) Calculate the dissociation constant for this electrolyte. [8]

(d) For the perchlorate ion, ClO_4^- , in water at 25 °C, $\lambda_m^0 = 67.2 Scm^2 mol^{-1}$.

- (i) Calculate the mobility, \mathbf{u} , of ClO_4^- in water
- (ii) Calculate the drift speed, s, of ClO_4^- in water in a field of 24 V/cm.
- (iii) Calculate the diffusion coefficient of ClO_4^- in water
- (iv) Estimate the radius of the hydrated perchlorate ion given that the viscosity of water is $8.91 \times 10^{-4} \text{ kg m}^{-1} \text{ s}^{-1}$. [10]

(Useful data: $\lambda_i = z_i u_i F$ $D = \frac{uRT}{zF} = \frac{kT}{6\pi\eta a}$)

Question 5 (25 marks)

- (a) Distinguish between physisorption and chemisorption [8]
- (b) A surface is half covered by a gas when the pressure is 1.0 atm. If the Langmuir isotherm, $\theta = \frac{Kp}{1+Kp}$, is followed:
 - (i) What is the value of the adsorption coefficient, K?
 - (ii) What pressure would give 90% coverage?
 - (iii) What coverage is given by a pressure of 0.10 atm? [8]
- (c) The adsorption of solutes on solids from liquids often follows a Freundlich isotherm, $\theta = kp^{1/n}$. Adapt the equation to apply to a solution and check its applicability to the following data for the adsorption of acetic acid on charcoal and determine the constants k and n.

[acid] mol/L	0.05	0.10	0.50	1.0	1.5
W _a /g	0.04	0.06	0.12	0.16	0.18

 W_a is the mass adsorbed per unit mass of charcoal.

[9]

(d) For the perchlorate ion, ClO_4^- , in water at 25 °C, $\lambda_m^0 = 67.2 Scm^2 mol^{-1}$.

- (i) Calculate the mobility, \mathbf{u} , of ClO_4^- in water
- (ii) Calculate the drift speed, s, of ClO_4^- in water in a field of 24 V/cm.
- (iii) Calculate the diffusion coefficient of ClO_4^- in water
- (iv) Estimate the radius of the hydrated perchlorate ion given that the viscosity of water is $8.91 \times 10^{-4} \text{ kg m}^{-1} \text{ s}^{-1}$. [10]

(Useful data: $\lambda_i = z_i u_i F$ $D = \frac{uRT}{zF} = \frac{kT}{6\pi\eta a}$)

Question 5 (25 marks)

- (a) Distinguish between physisorption and chemisorption [8]
- (b) A surface is half covered by a gas when the pressure is 1.0 atm. If the Langmuir isotherm, $\theta = \frac{Kp}{1+Kp}$, is followed:
 - (i) What is the value of the adsorption coefficient, K?
 - (ii) What pressure would give 90% coverage?
 - (iii) What coverage is given by a pressure of 0.10 atm? [8]
- (c) The adsorption of solutes on solids from liquids often follows a Freundlich isotherm, $\theta = kp^{1/n}$. Adapt the equation to apply to a solution and check its applicability to the following data for the adsorption of acetic acid on charcoal and determine the constants k and n.

[acid] mol/L	0.05	0.10	0.50	1.0	1.5
W _a /g	0.04	0.06	0.12	0.16	0.18

W_a is the mass adsorbed per unit mass of charcoal.

[9]

Question 6 (25 marks)

- (a) Give brief verbal explanations for each of the following
 - (i) Each of the formulas for the transport coefficients in the kinetic theory of gases is proportional to the mean free path, λ , and the mean speed. \overline{c} . [3]
 - (ii) The thermal conductivity and viscosity of a gas are independent of the number density, N. [3]
- (b) The viscosity of CO₂ at 1 atm and 0 °C is 139 μ P. Calculate the collision cross-section of CO₂ at this temperature. [5]
- (c) Two sheets of copper of area 1.5 m² are separated by 10.0 cm. What is the rate of transfer of heat by conduction from the warm sheet at 50 °C to the cold sheet at -10 °C.
 [5]
- (d) The diffusion coefficient of glucose in water is 6.81 x 10⁻¹⁰ m²s⁻¹ at 25 °C. The viscosity of water at 25 °C is 8.937 x 10⁻⁴ kg m⁻¹s⁻¹ and the density of glucose is 1.55 g cm⁻³. Assuming Stoke's law applies and that the molecule is spherical estimate

[9]

- (i) The radius of a glucose molecule.
- (ii) The molar mass of glucose.

Useful data

Coefficient of thermal conductivity for air $\kappa = 0.0241 \text{ J K}^{-1} \text{ m}^{-1} \text{ s}^{-1}$ $1 \text{ P} = 0.1 \text{ kg m}^{-1} \text{ s}^{-1}$ Diffusion coefficient $D = \frac{1}{3}\lambda\overline{c}$ Coefficient of thermal conductivity $\kappa = \frac{1}{3}\frac{\lambda\overline{c}C_{V,m}N}{V} = \frac{\overline{c}C_{V,m}}{3\sqrt{2}\sigma}$ Coefficient of viscosity $\eta = \frac{1}{3}m\lambda\overline{c}N = \frac{m\overline{c}}{3\sqrt{2}\sigma}$ Volume of a sphere $V = \frac{4}{3}\pi r^3$ Mass of CO₂ molecule m = 7.306 x 10⁻²⁶ kg

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	с	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	NA	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m _e	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε.	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ.	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} T^2 J^{-1} m^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	<i>Se</i>	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e c^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	-7.297 35 X 10 ⁻³
Rydberg constant	$R_{\star} = m_e e^4/8h^3 c \varepsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	• *	
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

ł.

Conversion factors

í

1 cal = 1 eV =	4.184 joules (J) 1.602 2 X 10 ⁻¹⁹ J			1 erg 1 eV/n	nolecul	e	-	1 X 10-7 J 96 485 kJ mol-1			
Prefixes	f	p	n	µ	m -	c	d	k	M	G	
	femto	pico	nano	micro	milli	centi	deci	kilo	mega	giga	
	10 ⁻¹⁵	10 ⁻¹²	10 ⁻⁹	10 ⁻⁶	10 ⁻³	10 ⁻²	10 ⁻¹	10 ³	10 ⁶	10 ⁹	

PERIODIC TABLE OF ELEMENTS

.

GROUPS																		
	1	2	3	4	5	6.	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	17	11/	IIIB	IVB	-VB	, VIB	VIIB		VIIIB		IB	IIB	IIIA -	IVA	VA	VIA	VIIA	VIIIA
	1,008								•								,	4.003
1	II																•	He
	1	·	-	,										2				
	6.941	9.012		Atomic mass - + 10.811 12.011 14.007 15.999 18.998										20.180				
2	Li	Be			•						Syn	nbol —	B	C	N	0	F	-Ne
,	3	4		·	-						Atom	ic No.	5	6	7	8	9	.10
	22.990	24:305											26.982	28.086	30.974	32.06	35.453	39.948
3	Na	Mg				TRAN	SITION	I ELEM	ENTS		•		AI	Si ·	P	S	Cl	Ar
	11	12						,					13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69 -	63.546	65.39 -	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V :	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
· · · ·	19	20	21	22	23	24	25	· 26	27	28	29	30 -	31	32	33	34	. 35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.94	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba.	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rŋ
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	-84	85	86
_	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)		,	• '					
,7	11	Ka	AC TAC	KI	Ha	Unh	Uns	Uno	Une	Uun			,					
L	0/	00	09	104	105	100	107.	108	109	110		•						,
					16													1
<i></i>				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167-26	168.93	173.04	174.97	
· *L	anthani	le Serie	S	Ce	Pr	Nu	Pm	Sm	LCu	Gd		Dy	,H0	- Er	1 m	YD 70		
	• • • •			. oC		00	10	02	20	04		00 .		00		70	/1 	
**	Actinid	e Series		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
				1 h	l'a	U	Np	Pu ·	Am	Cm	Bk		Es	Fm	Md	No		
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	

() indicates the mass number of the isotope with the longest half-life.

. ۲

· · .