UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/12

TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME: THREE (3) HOURS

INSTRUCTIONS:
THERE ARE SIX QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER ANY FOUR QUESTIONS.

A DATA SHEET AND A PERIODIC̣ TABLE ARE ATTACHED
GRAPH PAPER IS PROVIDED
NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question1(25 marks)

(a) The reaction rate as a function of initial reactant pressures was investigated for the reaction $2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and the following data were obtained:

Run	$\mathrm{P}_{0} \mathrm{H}_{2} /(\mathrm{kPa})$	$\mathrm{P}_{0} \mathrm{NO} /(\mathrm{kPa})$	Rate/(kPa s $\left.{ }^{-1}\right)$
1	53.3	40.0	0.137
2	53.3	20.3	0.033
3	38.5	53.3	0.213
4	19.6	53.3	0.105

Determine the rate law including the value of the rate constant
(b) In the stratosphere, the rate constant for the conversion of ozone to molecular oxygen by atomic chlorine, $\mathrm{Cl}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}+\mathrm{O}$, is $\mathrm{k}=1.7 \times 10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1} \mathrm{e}^{-260 \mathrm{~K} / \mathrm{T}}$.
(i) What is the rate of this reaction at 20 km where $[\mathrm{Cl}]=5 \times 10^{-17} \mathrm{M}$ and $\left[\mathrm{O}_{3}\right]=8 \times 10^{-9} \mathrm{M}$ and $\mathrm{T}=220 \mathrm{~K}$?
(ii) The concentrations at 45 km are $[\mathrm{Cl}]=3 \times 10^{-15} \mathrm{M}$ and $\left[\mathrm{O}_{3}\right]=8 \times 10^{-11}$ M and $\mathrm{T}=270 \mathrm{~K}$, what is the reaction rate at this attitude?
(c) The unimolecular decomposition of urea in aqueous solution is measured at two different temperatures and the following data are observed;

Trial no.	Temperature $/\left({ }^{\circ} \mathrm{C}\right)$	Rate constant $\mathrm{k} /\left(\mathrm{s}^{-1}\right)$
1	60.0	1.20×10^{-7}
2	71.5	4.40×10^{-7}

Determine the Arrhenius parameters for this reaction.
(d) The pK_{a} of $\mathrm{NH}_{4}{ }^{+}$is 9.25 at $25^{\circ} \mathrm{C}$. The rate constant at $25^{\circ} \mathrm{C}$ for the reaction of $\mathrm{NH}_{4}{ }^{+}$and OH^{-}to form aqueous ammonia is $4.0 \times 10^{10} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$.
(i) Calculate the rate constant for proton transfer to NH_{3}.
(ii) What relaxation time would be observed if a temperature jump were applied to a solution of $0.15 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$.
Useful data: $\mathrm{Kw}=1.0 \times 10^{-14}$ and $\mathrm{Kw}=\mathrm{K}_{a} \mathrm{~K}_{\mathrm{b}}$

Question $2(25$ marks)

(a) Consider the following reaction:
$\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{AgCl}(\mathrm{s}) \rightarrow 2 \mathrm{HCl}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
(i) Devise a cell in which the above reaction is the cell reaction
(ii) Write the Nernst equation for the cell in (i) [2]
(iii) The emf for the above cell was 0.3524 V when the molality of HCl was $0.100 \mathrm{~mol} / \mathrm{kg}$ and the hydrogen pressure was 1 bar . Calculate the activity and mean activity coefficient of the HCl assuming hydrogen is a perfect gas.
(iv) Calculate the per cent error in the mean activity coefficient if the Debye-Huckel limiting is used to calculate it. ($\log \gamma_{ \pm}=-\left|\mathbf{z}_{+} \mathrm{z}\right| \mathrm{AI}^{1 / 2}$, $\mathrm{A}=0.509$ at $25^{\circ} \mathrm{C}$)
(b) For the cell: $\quad \mathrm{Pt}|\mathrm{Ag}(\mathrm{s})| \mathrm{AgCl}(\mathrm{s})|\mathrm{HCl}(\mathrm{aq})| \mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})|\mathrm{Hg}(\mathrm{l})| \mathrm{Pt}$; $\frac{d E^{\theta}}{d T}=0.338 \mathrm{mV} / \mathrm{K}$ at $25^{\circ} \mathrm{C}$ and 1 bar .
(i) Write the cell reaction
(ii) Calculate $\Delta_{r} G^{\theta}, \Delta_{r} H^{\theta}$ and $\Delta_{r} S^{\theta}$ for the cell reaction

Table 1: Standard potentials at 298 K

Reduction half reaction	$\mathrm{E}^{\text {e/ / }}$
$\mathrm{AgCl}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{1}(\mathrm{aq})$	+0.22
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{aq})$	0, by definition
$\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Hg}(\mathrm{l})+2 \mathrm{Cl}^{-}(\mathrm{aq})$	+0.27

Question 3(25 marks)

(a) When a mixture of H_{2} and O_{2} is irradiated with light of wavelength 253.7 nm no reaction is observed. When a small amount of mercury vapour is added to the mixture and the mixture irradiated with 253.7 nm light, a rapid formation of water is observed. Given that the bond dissociation energies for O_{2} and H_{2} are 498 and $436 \mathrm{~kJ} / \mathrm{mol}$, respectively, account for the above observations.
(b) The quantum yield is 2 for the photolysis of gaseous HI to I_{2} and H_{2} by light of 253.7 nm wavelength. Calculate the number of moles HI that will be decomposed if 300 J of light of this wavelength is absorbed
(c) An enzyme catalysed reaction conversion of a substrate at $25{ }^{\circ} \mathrm{C}$ has Michaelis constant of 0.042 mol L . The rate of the reaction is $2.45 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ when the substrate concentration is $0.890 \mathrm{~mol} / \mathrm{L}$. What is the maximum velocity of this enzmolysis.
(d) Consider the following reaction of methane with molecular chlorine:
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})+\mathrm{HCl}(\mathrm{g})$
for which the following mechanism has been proposed

$$
\begin{gathered}
\mathrm{Cl}_{2} \xrightarrow{k_{1}} 2 \mathrm{Cl}^{-} \\
\mathrm{Cl}^{-}+\mathrm{CH}_{4} \xrightarrow{k_{2}} \mathrm{HCl}+\mathrm{CH}_{3}^{-} \\
\mathrm{CH}_{3}^{-}+\mathrm{Cl}_{2} \xrightarrow{k_{3}} \mathrm{CH}_{3} \mathrm{Cl}_{3}+\mathrm{Cl}^{-} \\
\mathrm{Cl}^{-}+\mathrm{Cl}^{-} \xrightarrow{k_{4}} \mathrm{Cl}_{2}
\end{gathered}
$$

Show that the mechanism is consistent with the experimental rate law

$$
\begin{equation*}
\frac{d[\mathrm{HCl}]}{d t}=k\left[\mathrm{CH}_{4}\right]\left[\mathrm{Cl}_{2}\right]^{1 / 2} \tag{7}
\end{equation*}
$$

Question 4 (25 marks)

(a) The charge of Mg^{2+} is twice that of Na^{+}, and from the equation

$$
u=\frac{z e}{6 \pi \eta a}
$$

one might therefore expect $\mathrm{Mg}^{2+}(\mathrm{aq})$ to have a much greater mobility than $\mathrm{Na}^{+}(\mathrm{aq})$. Actually, these ions have similar mobilities. Explain why?
(b) Derive the Ostwald dilution law for a weak electrolyte (all steps must be clearly shown).

$$
\begin{equation*}
\frac{1}{\Lambda_{m}}=\frac{1}{\Lambda_{m}^{0}}+\frac{\Lambda_{m} c}{K_{a}\left(\Lambda_{m}^{0}\right)^{2}} \quad \text { Ostwald dilution law } \tag{4}
\end{equation*}
$$

(c) The following data were obtained for a weak electrolyte HA in ethanol at $25^{\circ} \mathrm{C}$:

Concentration $\mathrm{c} / \mathrm{mol} \mathrm{dm}^{-3}$	1.566×10^{-4}	2.600×10^{-4}	6.219×10^{-4}	10.441×10^{-4}
Conductivity $\mathrm{K} / \mathrm{S} \mathrm{cm}^{-1}$	1.788×10^{-6}	2.418×10^{-6}	4.009×10^{-6}	5.336×10^{-6}

(i) Confirm that these values are in accordance with the Ostwald dilution law.
(ii) Calculate the dissociation constant for this electrolyte.
[8]
(d) For the perchlorate ion, ClO_{4}^{-}, in water at $25^{\circ} \mathrm{C}, \lambda_{m}^{0}=67.2 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$.
(i) Calculate the mobility, \mathbf{u}, of ClO_{4}^{-}in water
(ii) Calculate the drift speed, s , of ClO_{4}^{-}in water in a field of $24 \mathrm{~V} / \mathrm{cm}$.
(iii) Calculate the diffusion coefficient of ClO_{4}^{-}in water
(iv) Estimate the radius of the hydrated perchlorate ion given that the viscosity of water is $8.91 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$.
[10]
(Useful data: $\lambda_{i}=z_{i} u_{i} F \quad D=\frac{u R T}{z F}=\frac{k T}{6 \pi \eta a}$)

Question 5 (25 marks)

(a) Distinguish between physisorption and chemisorption
(b) A surface is half covered by a gas when the pressure is 1.0 atm . If the Langmuir isotherm, $\theta=\frac{K p}{1+K p}$, is followed:
(i) What is the value of the adsorption coefficient, K?
(ii) What pressure would give 90% coverage?
(iii) What coverage is given by a pressure of 0.10 atm ?
(c) The adsorption of solutes on solids from liquids often follows a Freundlich isotherm, $\theta=k p^{1 / n}$. Adapt the equation to apply to a solution and check its applicability to the following data for the adsorption of acetic acid on charcoal and determine the constants k and n.

[acid] $\mathrm{mol} / \mathrm{L}$	0.05	0.10	0.50	1.0	1.5
$\mathrm{~W}_{\mathrm{a}} / \mathrm{g}$	0.04	0.06	0.12	0.16	0.18

W_{a} is the mass adsorbed per unit mass of charcoal.
(d) For the perchlorate ion, ClO_{4}^{-}, in water at $25^{\circ} \mathrm{C}, \lambda_{m}^{0}=67.2 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$.
(i) Calculate the mobility, \mathbf{u}, of ClO_{4}^{-}in water
(ii) Calculate the drift speed, s , of ClO_{4}^{-}in water in a field of $24 \mathrm{~V} / \mathrm{cm}$.
(iii) Calculate the diffusion coefficient of ClO_{4}^{-}in water
(iv) Estimate the radius of the hydrated perchlorate ion given that the viscosity of water is $8.91 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$.
[10]
(Useful data: $\lambda_{i}=z_{i} u_{i} F$

$$
\left.D=\frac{u R T}{z F}=\frac{k T}{6 \pi \eta a}\right)
$$

Question 5 (25 marks)

(a) Distinguish between physisorption and chemisorption
(b) A surface is half covered by a gas when the pressure is 1.0 atm . If the Langmuir isotherm, $\theta=\frac{K p}{1+K p}$, is followed:
(i) What is the value of the adsorption coefficient, K?
(ii) What pressure would give 90% coverage?
(iii) What coverage is given by a pressure of 0.10 atm ?
(c) The adsorption of solutes on solids from liquids often follows a Freundlich isotherm, $\theta=k p^{1 / n}$. Adapt the equation to apply to a solution and check its applicability to the following data for the adsorption of acetic acid on charcoal and determine the constants k and n.

[acid] $\mathrm{mol} / \mathrm{L}$	0.05	0.10	0.50	1.0	1.5
$\mathrm{~W}_{\mathrm{a}} / \mathrm{g}$	0.04	0.06	0.12	0.16	0.18

W_{a} is the mass adsorbed per unit mass of charcoal.

Question 6 (25 marks)

(a) Give brief verbal explanations for each of the following
(i) Each of the formulas for the transport coefficients in the kinetic theory of gases is proportional to the mean free path, λ, and the mean speed. \bar{c}.
(ii) The thermal conductivity and viscosity of a gas are independent of the number density, N.
(b) The viscosity of CO_{2} at 1 atm and $0^{\circ} \mathrm{C}$ is $139 \mu \mathrm{P}$. Calculate the collision cross-section of CO_{2} at this temperature.
(c) Two sheets of copper of area $1.5 \mathrm{~m}^{2}$ are separated by 10.0 cm . What is the rate of transfer of heat by conduction from the warm sheet at $50^{\circ} \mathrm{C}$ to the cold sheet at $-10^{\circ} \mathrm{C}$.
(d) The diffusion coefficient of glucose in water is $6.81 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$. The viscosity of water at $25^{\circ} \mathrm{C}$ is $8.937 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ and the density of glucose is $1.55 \mathrm{~g} \mathrm{~cm}^{-3}$. Assuming Stoke's law applies and that the molecule is spherical estimate
(i) The radius of a glucose molecule.
(ii) The molar mass of glucose.

Useful data

Coefficient of thermal conductivity for air $\kappa=0.0241 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$

$$
1 \mathrm{P}=0.1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}
$$

Diffusion coefficient $\quad \mathrm{D}=\frac{1}{3} \lambda \bar{c}$
Coefficient of thermal conductivity . $\kappa=\frac{1}{3} \frac{\lambda \bar{c} C_{V, m} N}{V}=\frac{\bar{c} C_{V, m}}{3 \sqrt{2} \sigma}$
Coefficient of viscosity $\quad \eta=\frac{1}{3} m \lambda \bar{c} N=\frac{m \bar{c}}{3 \sqrt{2} \sigma}$
Volume of a sphere $\mathrm{V}=\frac{4}{3} \pi r^{3}$
Mass of CO_{2} molecule $\mathrm{m}=7.306 \times 10^{-26} \mathrm{~kg}$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-33} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{Na}_{\mathrm{A}} \mathrm{k}$	$8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $6.2364 \times 10 \mathrm{~L} \mathrm{Torr} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$h=h / 2 \pi$	$1.05457 \mathrm{X}-10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	$\mathrm{N}_{\text {A }}$	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	m_{e}	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	mp_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{n}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / c^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{\text {。 }}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Js}^{2} \mathrm{C}^{-7} \mathrm{~m}^{-1}$
		$4 \pi \times 10^{-7} \mathrm{~T}^{-2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} \mathrm{h} / 2 \mathrm{~m}_{\mathrm{e}}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{N}=e^{\text {¢ }}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	$g e$	2.00232
Bohr radius	$a_{0}=4 \pi \varepsilon_{0} \eta / m_{e} e^{2}$	$5.29177 \times 10^{-14} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} \mathrm{c} / 2 \mathrm{~h}$	$=7.29735 \times 10^{-3}$
Rydberg constant	$\mathrm{R}_{\mathrm{m}}=\mathrm{me}_{e} 4^{4} / 8 \mathrm{~h}^{3} \mathrm{E}_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~m} \mathrm{~s}^{2}$
Gravitational constant	G	$6.67259 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

1 cal	4.184 joules (J)			1 erg			$=$	$1 \times 10^{7} \mathrm{~J}$		
$1 \mathrm{eV}=$	$1.6022 \times 10^{-19} \mathrm{~J}$			$1 \mathrm{eV} /$ molecule				$96485 \mathrm{~kJ} \mathrm{moll}^{-1}$		
Prefixes	f	P	\square	μ	m .	c	d	k	M	G
	femto	pico	nano	micro	milli	centi	deci	kilo	mega	giga
	10^{-15}	10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10^{3}	10^{6}	10^{9}

*Lanthanide Scrics
** Actinide Scrics

140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	60	68	69	70	71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

() indicates the mass number of the isotope with the longest half-life.

