UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2011/12

TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME: THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER ANY FOUR QUESTIONS.

A DATA SHEET AND A PERIODIC TABLE ARE ATTACHED
GRAPH PAPER IS PROVIDED
NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

(a) Because of its importance in atmospheric chemistry, the thermal decomposition of nitric oxide, $2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$, has been studied extensively. The commonly accepted mechanism is:

(1)	$\mathrm{NO}+\mathrm{NO} \rightarrow \mathrm{N}_{2} \mathrm{O}+\mathrm{O}$	k_{1}
(2)	$\mathrm{O}+\mathrm{NO} \rightarrow \mathrm{O}_{2}+\mathrm{N}$	k_{2}
(3)	$\mathrm{N}+\mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{O}$	k_{3}
(4)	$\mathrm{O}+\mathrm{O}+\mathrm{M} \rightarrow \mathrm{O}_{2}+\mathrm{M}$	k_{4}
(5)	$\mathrm{O}_{2}+\mathrm{M} \rightarrow \mathrm{O}+\mathrm{O}+\mathrm{M}$	$\mathrm{k}_{4}{ }^{\prime}$

(i) Label the steps of the mechanism as initiation, propagation, etc.
(ii) Write down the full expression for the rate of disappearance of NO.
(iii) What does this expression become on the basis of the following assumptions: [N] reaches a steady state, the propagation rate is much faster than the initiation step and that oxygen atoms are in equilibrium with oxygen molecules.
(iv) Find the expression for the effective activation energy for the overall reaction in terms of the activation energies of the individual steps in the reaction.
[12]
(b) An enzyme catalysed reaction following the Michaelis-Menten mechanism

$$
\mathrm{E}+\mathrm{S}=\mathrm{ES} \rightarrow \mathrm{P}+\mathrm{E} \quad \text { rate constants are } \mathrm{k}_{1}, k_{1}^{\prime}, \mathrm{k}_{2}
$$

has the rate law $\quad \frac{d[P]}{d t}=\frac{k_{2}[S][E]_{0}}{K_{M}+[S]} \quad$ where $\mathrm{K}_{\mathrm{M}}=\frac{k_{1}^{\prime}+k_{2}}{k_{1}}$
The following data were obtained for the action of ATPase on ATP at $20^{\circ} \mathrm{C}$ when the concentration of ATPase was $20 \mathrm{nmol} \mathrm{dm}{ }^{-3}$:

$[\mathrm{ATP}] /\left(\mu \mathrm{mol} \mathrm{dm}{ }^{-3}\right)$	0.60	0.80	1.4	2.0	3.0
Rate $/\left(\mu \mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}\right)$	0.81	0.97	1.30	1.47	1.69

Determine

(i) the maximum velocity of the reaction,
(ii) the Michaelis constant
(iii) the turnover number and
(iv) the catalytic efficiency of the enzyme

Question 2 (25 marks)

(a) Express the activity of a $\mathrm{La}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution of molality m in terms of the mean activity coefficient, $\gamma_{ \pm}$and the molality m.
(b) Use the Debye-Huckel limiting law to estimate the mean activity coefficient of $\mathrm{La}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ in a solution that is $0.002 \mathrm{~mol} / \mathrm{kg}$ in $\mathrm{La}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $0.001 \mathrm{~mol} / \mathrm{kg}$ $\mathrm{K}_{2} \mathrm{SO}_{4} . \quad\left(\log \gamma_{ \pm}=-|\mathrm{z}+\mathrm{Z}| \mathrm{AI}^{1 / 2}, \mathrm{~A}=0.509\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
(c) Use the standard potentials of the couples $\mathrm{Co}^{3+} / \mathrm{Co}^{2+} \mathrm{E}^{\theta}=+1.81 \mathrm{~V}, \mathrm{Co}^{2+} / \mathrm{Co} \mathrm{E}^{\theta}$ $=-0.28 \mathrm{~V}$ and $\mathrm{AgCl} / \mathrm{Cl}^{-}, \mathrm{Ag} \mathrm{E}^{\theta}=+0.22 \mathrm{~V}$ to calculate the E^{θ} and the equilibrium constant at 298 K of the following reaction:

$$
\begin{equation*}
\mathrm{Co}^{3+}(\mathrm{aq})+3 \mathrm{Cl}^{-}(\mathrm{aq})+3 \mathrm{Ag}(\mathrm{~s}) \rightarrow 3 \mathrm{AgCl}(\mathrm{~s})+\mathrm{Co}(\mathrm{~s}) \tag{10}
\end{equation*}
$$

(d) Use the data below to calculate $\Delta_{r} \mathrm{H}^{o}$ and $\Delta_{\mathrm{r}} G^{o}$ for the following reaction:

$$
\begin{equation*}
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{KCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{KNO}_{3}(\mathrm{aq}) \tag{8}
\end{equation*}
$$

Substance	$\Delta_{r} \mathrm{H}^{o} / \mathrm{kJmol}^{-1}$	$\Delta_{\mathrm{r}} G^{o} \mathrm{kJmol}^{-1}$
$\mathrm{AgCl}(\mathrm{s})$	-127.0	-109.8
$\mathrm{Ag}^{+}(\mathrm{aq})$	+105.6	+77.1
$\mathrm{Cl}(\mathrm{aq})$	-167.2	-131.2

Question 3 (25 marks)

(a) Why is the stoichiometry of a reaction generally not sufficient to determine reaction order? When is it possible to infer the reaction order from the stoichiometry?
(b) The data below apply to the formation of urea from ammonium cyanate

$$
\mathrm{NH}_{4} \mathrm{CNO}(\mathrm{aq}) \rightarrow \mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})
$$

Initially 22.9 g of ammonium cyanate was dissolved in enough water to prepare $1.00 \mathrm{dm}^{3}$ of solution.
(i) Show that the reaction follows the second order kinetics: $\frac{1}{[J]}=\frac{1}{[J]}+k t$
(ii) Determine the rate constant.
(iii) Determine the mass of ammonium cyanate left after 300 minutes.

t / min	0	20.0	50.0	65.0	150
Mass of urea/g	0	7.0	12.1	13.8	17.7

(c) The reactant 1,3 cyclohexadiene can be photochemically converted to cis hexatriene. In an experiment, 2.5 mmol of cyclohexadiene are converted to cis hexatriene when irradiated with 100 W of 280 nm light for 27 s . All the light is absorbed by the sample. What is the quantum yield for this photochemical process?
(d) The second order rate constant for the reaction of oxygen atoms and benzene have been measured and found to be $1.44 \times 10^{7} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at 300.3 K and 6.9×10^{7} $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at 392.2 K . Find the pre-exponential factor and the activation energy of the reaction.

Question 4 (25 marks)

(a) Define the mean free path. How does this quantity vary with number density, particle diameter and the mean particle speed?
(b) Calculate the mean free path of argon $\left(\sigma=0.36 \mathrm{~nm}^{2}\right)$ at 298 K at (i) 0.3 atm and (ii) $5 \times 10^{-6} \mathrm{~atm}$.
(c) A thermopane window consists of two sheets of glass separated by a volume filled with air (which we will model as N_{2} where $K=0.0240 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$). If the window is $1 \mathrm{~m}^{2}$ in area with a separation between glass sheets of 3 cm , what is the loss of energy when:
(i) The exterior of the window is at a temperature of $10^{\circ} \mathrm{C}$ and the interior of the window is a temperature of $22^{\circ} \mathrm{C}$?
(ii) The same temperature differential as in (i) is used, but now the window is filled with $\operatorname{Ar}\left(K=0.0163 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)$ rather than N_{2} ?
(d) Gas cylinders of CO_{2} are sold in terms of weight of CO_{2}. A cylinder contains 22.7 kg of CO_{2}. Use Poiseuille's formula $\left(\frac{d V}{d t}=\frac{\left(P_{1}^{2}-P_{2}^{2}\right) \pi r^{4}}{16 l \eta p_{0}}\right)$ to determine for how long can this cylinder be used in an experiment that requires flowing CO_{2} at $293 \mathrm{~K}(\eta=146 \mu \mathrm{P})$ through a 1.00 m long tube (diameter 0.75 mm) with input pressure of 1.05 atm and output pressure of 1.00 atm ? The flow is measured at the tube output.
(e) A solid surface with dimensions $3.5 \mathrm{~mm} \times 4.0 \mathrm{~cm}$ is exposed to helium gas at 111 Pa and 1500 K . How many collisions do the He atoms make with this surface in 10 s? (Collision frequency $Z_{w}=\frac{p}{(2 \pi m k T)^{1 / 2}}$

Question 5 (25 marks)

(a) A certain solid sample adsorbs 0.44 mg of CO when the pressure of the gas is 26.0 kPa and the temperature is 300 K . The amount adsorbed when the pressure is 3.0 kPa and temperature 300 K is 0.19 mg . The Langmuir isotherm, $\theta=\frac{K p}{1+K p}$, is known to describe the adsorption. Find the fractional coverage at the surface at the two pressures.
(b) Hydrogen iodide is very strongly adsorbed on gold but only slightly adsorbed on platinum. If the adsorption follows the Langmuir isotherm on both surfaces, predict the order of the HI decomposition on each of the two surfaces.
(c) In an experiment on the adsorption of ethene on iron it was found that the same volume of gas desorbed in 1856 s at 873 K and 8.44 s at 1012 K . What is the activation energy desorption? How long would it take for the same amount of ethene to desorb at (i) 298 K , (ii) 1500 K ?

Question 6 (25 marks)

(a) Use the kinetic theory of gases to explain how the diffusion coefficient varies with
(i) an increase in molar mass
(ii) an increase in collisional cross-section
(b) A manometer was connected to a bulb containing nitrogen (molar mass 28.02 $\mathrm{g} / \mathrm{mol}$) under slight pressure. The gas was allowed to escape through a small pinhole, and the time for the manometer reading to drop from 65.1 cm to 42.1 cm was 18.5 s . When the experiment was repeated using a fluorocarbon gas, the same fall took 82.3 s . Calculate the molar mass of the fluorocarbon.
(c) Myogloblin is a protein that participates in oxygen transport in blood. For myogloblin in water at $20^{\circ} \mathrm{C}$, the diffusion coefficient, D , is 1.13×10^{-10} $\mathrm{m}^{2} \mathrm{~s}^{-1}$, specific volume, $\overline{\mathrm{V}}=0.740 \mathrm{~cm}^{3} \mathrm{~g}^{-1}$. The viscosity of water is 1.002 cP at this temperature
(i) Estimate the size of a myogloblin molecule.
(iii) Estimate the molecular mass of myogloblin?
(Useful data: volume of a sphere $=\frac{4}{3} \pi r^{3}$ and diffusion coefficient $\mathrm{D}=\frac{k T}{6 \pi \eta a}$)

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{\text {t }}$
Boltzmann constant	k	$1.38066{\mathrm{X} 100^{-23} \mathrm{~J} \mathrm{~K}^{-1}}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\lambda} \mathrm{k}$	$8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $6.2364 \times 10 \mathrm{~L}^{2}$ Torr $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$h=\mathrm{h} / 2 \pi$	$1.05457 \mathrm{X}-10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	N_{A}	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	$\mathrm{m}_{\text {e }}$	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	mb_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{4}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$E_{0}=1 / c^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{\text {。 }}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	$\mu_{\text {o }}$	$4 \pi \times 10^{-7} \mathrm{~J} \mathrm{~s}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
		$4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{en} / 2 \mathrm{~m}_{\mathrm{c}}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{\mathrm{N}}=\mathrm{e} \uparrow / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	g_{e}	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \hbar / \mathrm{m}_{\mathrm{e}} \mathrm{e}^{2}$	$5.29177 \times 10^{-14} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} \mathrm{c} / 2 \mathrm{~h}$	- 7.29735×10^{-3}
Rydberg constant	$\mathrm{R}_{\mathrm{m}}=\mathrm{m}_{\mathrm{e}} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \mathrm{E}_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67259 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

1 cal	4.184 joules (J)			1 erg			$=$	$1 \times 10^{-7} \mathrm{~J}$		
$1 \mathrm{eV}=$	$1.6022 \times 10^{-19} \mathrm{~J}$			$1 \mathrm{eV} / \mathrm{molecule}$				$96485 \mathrm{~kJ} \mathrm{~mol}^{-1}$		
Prefixes	f	p	\mathfrak{n}	μ	m	c	d	k	M	G
	femto	pico	nano	micro	milli	centi	deci	kilo	mega	giga
	10^{-15}	10^{-12}	10^{-9}	10^{6}	10^{-3}	10^{-2}	10^{-1}	10^{3}	10^{5}	10^{9}

PERIODIC TABLE OF ELEMENTS

GROUPS																		
PERIOUS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	11	$11 \wedge$	1113	IVB	VB	VIB	VIIB	VIIIB			18	118	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	$\begin{gathered} 1.01018 \\ 11 \end{gathered}$																	$\begin{gathered} 4.003 \\ 1 \mathrm{Ce} \\ 2 \\ \hline \end{gathered}$
2	$\begin{gathered} 6.941 \\ \mathrm{Li} \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 9.012 \\ \mathrm{Be} \\ 4 \end{gathered}$							-	$\begin{gathered} \text { Alomic mass } \\ \text { Symbol } \\ \text { Alomic No. } \\ \hline \end{gathered}$				$\begin{gathered} 12.011 \\ \mathrm{C} \\ 6 \end{gathered}$	$\begin{gathered} 14.007 \\ \mathrm{~N} \\ 7 \end{gathered}$	$\begin{gathered} 15.999 \\ 0 \\ 8 \end{gathered}$	$\begin{gathered} 18.998 \\ \text { F } \\ 9 \end{gathered}$	$\begin{gathered} 20.180 \\ -\mathrm{Ne} \\ 10 \end{gathered}$
3	$\begin{gathered} 22.990 \\ \mathrm{Na} \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} 24: 305 \\ \mathrm{Mg} \\ 12 \end{gathered}$	TRANSITION ELEMENTS										$\begin{array}{\|c} \hline 26.982 \\ \mathrm{Al} \\ 13 \end{array}$	$\begin{gathered} 28.086 \\ \mathrm{Si} \\ 14 \\ \hline \end{gathered}$	$\begin{array}{\|c} 30.974 \\ \mathrm{P} \\ 15 \\ \hline \end{array}$	$\begin{gathered} 32.06 \\ \mathrm{~S} \\ 16 \\ \hline \end{gathered}$	$\begin{gathered} 35.453 \\ \mathrm{El} \\ 17 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 39.948 \\ \mathrm{Ar} \\ 18 \\ \hline \end{array}$
4	$\begin{array}{\|c} \hline 39.098 \\ K \\ 19 \\ \hline \end{array}$	$\begin{gathered} \hline 40.078 \\ \mathrm{Ca} \\ 20 \\ \hline \end{gathered}$	$\begin{array}{\|c} 44.956 \\ \mathrm{Sc} \\ 21 \\ \hline \end{array}$	$\begin{gathered} 47.88 \\ \mathrm{Ti} \\ 22 \\ \hline \end{gathered}$	$\begin{array}{\|c} 50.942 \\ V \\ 23 \\ \hline \end{array}$	$\begin{gathered} 51.996 \\ \mathrm{Cr} \\ 24 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 54.938 \\ \mathrm{Mn} \\ 25 \\ \hline \end{array}$	$\begin{gathered} 55.847 \\ F \mathrm{e} \\ .26 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 58.933 \\ \mathrm{Co} \\ 27 \\ \hline \end{array}$	$\begin{gathered} \hline 58.69 \\ \mathrm{Ni} \\ 28 \\ \hline \end{gathered}$	$\begin{gathered} -63.546 \\ \mathrm{Cu} \\ 29 \\ \hline \end{gathered}$	$\begin{gathered} 65.39 \\ \mathrm{Zn} \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 69.723 \\ \mathrm{Ga} \\ 31 \\ \hline \end{gathered}$	$\begin{gathered} 72.61 \\ \mathrm{Ge} \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} 74.922 \\ \text { As } \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 78.96 \\ \mathrm{Se} \\ 34 \\ \hline \end{gathered}$	$\begin{gathered} 79.904 \\ \mathrm{Br} \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 83.80 \\ \mathrm{Kr} \\ 36 \\ \hline \end{gathered}$
5	$\begin{gathered} \hline 85.468 \\ \text { R.b } \\ 37 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 87.62 \\ & \mathrm{Sr} \\ & 38 \\ & \hline \end{aligned}$	$\begin{gathered} 88.906 \\ Y \\ 39 \\ \hline \end{gathered}$	$\begin{gathered} 91.224 \\ \mathrm{Zr} \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 92.906 \\ \mathrm{Nb} \\ 41 \\ \hline \end{gathered}$	$\begin{gathered} 95.94 \\ \text { Mo } \\ 42 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 98.907 \\ \mathrm{Tc} \\ 43 \\ \hline \end{array}$	$\begin{gathered} \hline 101: 07 \\ \mathrm{Ru} \\ 44 \\ \hline \end{gathered}$	$\begin{gathered} 102.9 .1 \\ R \mathrm{Rh} \\ 45 \\ \hline \end{gathered}$	$\begin{gathered} 106.42 \\ \mathrm{Pd} \\ 46 \\ \hline \end{gathered}$	$\begin{gathered} 107.87 \\ \text { Ag } \\ 47 \\ \hline \end{gathered}$	$\begin{gathered} 112.41 \\ \mathrm{Cd} \\ 48 \\ \hline \end{gathered}$	$\begin{gathered} 114.82 \\ \text { In } \\ 49 \\ \hline \end{gathered}$	$\begin{array}{\|c} 118.71 \\ \mathrm{Sn} \\ 50 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 121.75 \\ 56 \\ 51 \\ \hline \end{array}$	$\begin{gathered} 127.60 \\ T \varepsilon \\ 52 \\ \hline \end{gathered}$	$\begin{array}{\|c} 126.90 \\ 1 \\ 53 \\ \hline \end{array}$	$\begin{gathered} 131.29 \\ \mathrm{Xc} \\ 54 \\ \hline \end{gathered}$
6	$\begin{gathered} 132.91 \\ \mathrm{Cs} \\ 55 \\ \hline \end{gathered}$	$\begin{gathered} 137.33 \\ \mathrm{Ba} \\ 56 \\ \hline \end{gathered}$	$\begin{gathered} 138.91 \\ \text { *La } \\ 57 \\ \hline \end{gathered}$	$\begin{gathered} 178.49 \\ \mathrm{Hff} \\ 72 \\ \hline \end{gathered}$	$\begin{gathered} 180.95 \\ \mathrm{Ta} \\ 73 \\ \hline \end{gathered}$	$\begin{gathered} 183.85 \\ W \\ 74 \\ \hline \end{gathered}$	$\begin{gathered} 186.21 \\ \mathrm{Re} \\ 75 \\ \hline \end{gathered}$	$\begin{gathered} 190.2 \\ 0 \mathrm{~s} \\ 76 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 192.22 \\ \text { Ir } \\ 77 \\ \hline \end{array}$	$\begin{gathered} 195.08 \\ \mathrm{Pt} \\ 78 \\ \hline \end{gathered}$	$\begin{gathered} 196.97 \\ \mathrm{Au} \\ 79 \\ \hline \end{gathered}$	$\begin{gathered} 200.59 \\ \mathrm{Hg} \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 204.38 \\ \mathrm{TI} \\ 81 \\ \hline \end{gathered}$	$\begin{gathered} 207.2 \\ \mathrm{~Pb} \\ 82 \\ \hline \end{gathered}$	$\begin{array}{\|c} 208.98 \\ \mathrm{Bi} \\ 83 \\ \hline \end{array}$	$\begin{gathered} \hline(209) \\ \mathrm{PO}_{1} \\ 84 \\ \hline \end{gathered}$	$\begin{gathered} \hline(210) \\ \text { At } \\ 85 \\ \hline \end{gathered}$	$\begin{gathered} (222) \\ \mathrm{Rnn} \\ 86 \\ \hline \end{gathered}$
7	$\begin{aligned} & 223 \\ & \mathrm{Fr} \\ & 87 \end{aligned}$	$\begin{gathered} 226.03 \\ \mathrm{Ra} \\ 88 \end{gathered}$	$\begin{gathered} (227) \\ { }^{* *} \mathrm{Ac} \\ 89 \end{gathered}$	$\begin{gathered} (261) \\ \operatorname{Rf} \\ 104 \end{gathered}$	$\begin{gathered} (262) \\ \mathrm{Ha} \\ 105 \end{gathered}$	$\begin{aligned} & (263) \\ & \text { Unh } \\ & 106 \end{aligned}$	$\begin{aligned} & (262) \\ & \text { Uns } \\ & 107 . \end{aligned}$	$\begin{aligned} & (265) \\ & \text { Un0 } \\ & 108 \end{aligned}$	$\begin{aligned} & (266) \\ & \text { Une } \\ & 109 \end{aligned}$	$\begin{aligned} & \text { (267) } \\ & \text { Uun } \\ & 110 \end{aligned}$								
*Lanthanide Scrics				$\begin{gathered} 140.12 \\ \mathrm{Ce} \\ 58 \end{gathered}$	$\begin{gathered} 140.91 \\ \mathbb{P r} \\ 59 \end{gathered}$	$\begin{aligned} & 144.24 \\ & \mathrm{Nd} \\ & 60 \end{aligned}$	$\begin{gathered} (145) \\ \mathrm{Pm} \\ 61 \end{gathered}$	$\begin{gathered} 150.36 \\ S m \\ 62 \end{gathered}$	$\begin{gathered} 151.96 \\ \mathrm{Eu} \\ 63 \end{gathered}$	$\begin{gathered} 157.25 \\ G d \\ 64 \end{gathered}$	$\begin{array}{\|c} \hline 158.93 \\ \mathrm{~Tb} \\ 65 . \end{array}$	$\begin{gathered} 162.50 \\ \text { Dy } \\ 66 \end{gathered}$	$\begin{gathered} 164.93 \\ . \mathrm{Ho} \\ \therefore .67 \end{gathered}$	$\begin{aligned} & 167: 26 \\ & -\mathbb{E r} \\ & 68 \end{aligned}$	$\begin{gathered} 168.93 \\ \mathrm{Tm} \\ 69 \end{gathered}$	$\begin{gathered} 173.04 \\ Y b \\ 70 \end{gathered}$	$\begin{gathered} 174.97 \\ \mathrm{Lu} \\ 71 \end{gathered}$	
**Actinide Scrics				$\begin{gathered} 232.04 \\ T h \\ 90 \end{gathered}$	$\begin{gathered} 231.04 \\ \mathrm{~Pa} \\ 91 \end{gathered}$	$\begin{gathered} 238.03 \\ U \\ 92 \end{gathered}$	$\begin{gathered} 237.05 \\ \mathrm{~Np} \\ 93 \end{gathered}$	$\begin{gathered} (244) \\ \mathrm{Pu} \\ 94 \end{gathered}$	$\begin{gathered} (243) \\ \text { Am } \\ 95 \end{gathered}$	$\begin{gathered} (247) \\ \mathrm{Cm} \\ 96 \end{gathered}$	$\begin{gathered} (247) \\ \mathrm{Bk} \\ 97 \end{gathered}$	$\begin{gathered} (251) \\ \mathrm{Cf} \\ 98 \end{gathered}$	$\begin{gathered} \text { (252) } \\ \text { Es } \\ 99 \end{gathered}$	(257) Fm 100	(258) Md 101	$\begin{gathered} (259) \\ \text { No } \\ 102 \end{gathered}$	$\begin{gathered} (260) \\ \mathrm{Lr} \\ 103 \end{gathered}$	

[^0]
[^0]: () indicates the mass number of the isotope with the longest half-life.

