UNIVERSITY OF SWAZILAND

Faculty of Science Department of Chemistry Final Examination 2011/2012

TITLES OF PAPER: Separation Methods & Environmental Analytical Techniques.

COURSE CODES: C611 & ERM642

TIME ALLOWED: 3 (THREE) HOURS

INSTRUCTIONS:

1) Answer any Four (4) questions

2) Each question is weighted 25 marks

3) Write neatly and clearly

4) A periodic table and other useful data have been provided with this paper.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

Question 1 (25 marks)

- (a) (i) Give the expression that relates retention volume and specific retention volume.
 What are the factors that determine the specific retention volume in a given solvent? (3)
 - (ii) Assuming ideal behaviour, show how the retention time/volume is affected by increasing the temperature and volatility of the solutes. (3)
- (b) (i) Explain the term 'resolution of chromatographic elution bands' Give an expression for the resolution factor in terms of N(number of theoretical plates), and the distribution coefficients of the solutes. Define all the terms in it. (4)
 - (ii) Discuss the effects of the capacity factor, selectivity factor and N on the resolution of two solutes by a given column. (3)
- (c) Two compounds A and B have retention times of 8.26 and 8.43min. respectively on a 20-m column. The peak widths (at base), for A and B were 0.15 and 0.16min. respectively. The retention time for an unretained solute is 0.19min.
 - (i) Calculate the number of theoretical plates for each compound and the average number of theoretical plates.
 - (ii) Determine the average height of a theoretical plate.
 - (iii) Calculate the resolution and the capacity factors for A and B.
 - (iv) Compare the resolution obtained using Δt_r , with that obtained using the capacity factors.
 - (v) What column length is required to achieve a resolution of 1.5? (12)

Question 2 (25 marks)

- (a) (i) Explain the term 'band broadening' in GC analysis. (1)
 - (ii) With reference to the Van Deemter equation, account for the contribution by each of the factors responsible for band broadening and column efficiency in terms of HETP.
 (8)

- (b) By making reference to the Van Deemter equation, predict the effect (increase, no effect, cannot determine), on the plate height, H, in each of the following conditions, with only one parameter varied at a time:
 - (i) Decreasing the particle size.
 - (ii) Increasing the column temperature.
 - (iii) Increasing the thickness of the liquid coating material.
 - (iv) Increasing the linear gas flow rate.

(2)

(2)

(c) The analysis of n-hexane was carried out by injecting 2-μL samples unto a 3.00m GC column. The following table contains the data obtained:

Sample	1	2	3	4	5	6	7	8
Flow Rate (mL/s)	2.00	1.51	1.20	1.05	0.84	0.67	0.53	0.43
Retention rate, t _r (s)	329.4	382.2	430.2	457.2	517.2	589.8	678.6	761.4
Peak Width (s)	21.0	23.4	25.8	28.2	32.4	40.8	48.6	57.0

- (i) Prepare a van Deemter plot (i.e. plot HETP vs. flow rate). (8)
- (ii) Determine the optimum flow rate.
- (iii) Calculate N and H (HETP), at the optimum flow rate. (4)

Question 3 (25 marks)

- (a) Discuss three specific applications of GC method of analysis in everyday life, giving local examples in each case.
 (6)
- (b) For the E.C.D. GC detector,
 - (i) Discuss its advantages, limitations and working principles.
 - (ii) Give two examples of its usual applications for real analysis. (8)
- (c) Describe the basic features of a flame ionization detector of a GC. How does its sensitivity compare with that of a thermal conductivity detector? (5)

In using a GC for the determination of the %v/v of methyl salicylate in a rubbing alcohol, a set of standard additions was prepared by transferring 20.00mL of the rubbing alcohol to separate 25 - mL volumetric flasks and pipetting 0.00mL, 0.20mL and 0.50mL of methyl salicylate to the flasks. All three flasks were then diluted to volume using isopropanol. Analysis of the three samples gave peak heights of methyl salicylate of 57.00mm, 88.5mm, and 132.5mm respectively. Determine the %v/v methyl salicylate in the rubbing alcohol.

Question 4 (25 marks)

- (a) Give three advantages and two disadvantages of HPLC when compared with GC as separation techniques.
 (5)
- (b) List five desirable characteristics of a liquid to be employed as a mobile phase for HPLC analysis.
 (5)
 - (i) What is 'Polarity Index'? How is it's principles employed during HPLC analysis?

(3)

- (ii) In carrying out a reverse phase HPLC separation, a mobile phase mixture of 70%v/v water and 30%v/v methanol was used. Determine the polarity index of the mobile phase. The polarity index of water is 10.2 while that of methanol is 5.1.
 (3)
- (d) Given the following compounds: n-hexane, n-hexanol, benzenePredict the order of their elution, using:
 - (i) A normal phase separation,
 - (ii) A reversed phase separation. (2)
- (e) The contents of a multivitamin tablet was being determined using an HPLC. A $5\mu L$ standard containing all the vitamins was first injected into the HPLC. The amount of the vitamins and their corresponding signals are tabulated below. Similarly, the unknown was treated and a $5\mu L$ sample injected into the HPLC. The corresponding signals are also shown in the lowest row of the same table. Determine the amount of each vitamin

Vitamin	Vit.C	Niacin	Niacinamide	Pyridoxine	Thiamine	Folic Acid	Riboflavin
Conc. (ppm)	170	130	120	150	50	15	10
Signal (arb. Units)	0.22	1.35	0.90	1.37	0.82	0.36	0.29
Unknown (Arb Units)	0.87	0.00	1.40	0.22	0.19	0.11	0.44

present in the sample in mg, given that the unknown tablet was dissolved in a100mL volumetric flask. (7)

Question 5 (25 marks)

(a) Define the following terms and discuss the factors that influence their values:

- (i) electrophoretic mobility
- (ii) Electroosmotic flow velocity. (6)

(b) Give a brief account of the principles of capillary zone electrophoresis (CZE).
 What is its main limitation and how is it overcome by the micelar electrokinetic chromatography(MEKC)? (7)

- © Discuss the efficiency and solute resolution of capillary electrophoresis, indicating the parameters that influence them. (6)
- (d) CZE was employed for the analysis of NO₃⁻ in aquarium water using IO₄⁻ as an internal standard. Standard solutions of 30.00ppm NO₃⁻ and 20.00 ppm of IO₄⁻ gave peak heights (arbitrary units), of 190.0 and 200.2 respectively. A 2.50 mL water sample from an aquarium was transferred into a 250.0 mL volumetric flask and then diluted to volume after adding sufficient internal standard to make its concentration 10.00 ppm. Analysis gave signals of 29.2 and105.8 NO₃⁻ and IO₄⁻ peak heights respectively. Estimate the concentration of the NO₃⁻ in the aquarium sample in ppm. (6)

Question 6 (25marks)

- (a) Draw and label a schematic diagram of a HPLC. (4)
- (b) Discuss the basic structural features of HPLC columns in terms of the nature of the material and the design. Account for these makeup.
 (6)
- (c) For an HPLC:
 - (i) Give three of the ideal properties required for HPLC detectors.
 - (ii) Distinguish between bulk property and solute property detectors and give one example of each.
 (6)
- (d) For the following HPLC detectors, discuss the main features/operating principles, including advantages, with the aid of a schematic diagram where possible:
 - (i) Refractive index detectors
 - (ii) Ultraviolet absorbance detectors with filters. (9)

and the second sec		-		
	· ·	·	•	
			· · · ·	
			· · ·	
	Quantity	Symbol	Value	General data an
	Speed of light	с	2.997 924 58 × 10 ⁸ m s ⁻¹	😳 fundamental
	- Elementary charge			constants-
	Faraday constant	$F = eN_{\lambda}$	9.6495 × 10 ⁴ C mol ⁻¹	
	Boltzmann constant	*	1.390 66 × 10 ⁻²³ J K ⁻¹	
	Gas constant	$R = kN_{\star}$	8.314 51 J K ⁻¹ mol ⁻¹	, •
		•	8.205 78 × 10 ⁻²	
			dm ² atm K ⁻¹ mol	/-1
	· ·	•	62.364 L Torr K ⁻¹ mol ⁻¹	•
	Planck constant	λ 	6.626 08 × 10 ⁻³⁴ J s	
	·	$\dot{n} = h/2\pi$	$1.054^{\circ}57 \times 10^{-34}$ J s	
	Avogadro constant	Nà	$6.022 14 \times 10^{23} \text{ mol}^{-1}$	
	Atomic mass unit	U	1.660 54 × 10 ⁻¹⁷ kg	· ·
: •	Mass of electron	<i>m</i> .	9.109 39 × 10 ⁻³¹ kg	•
	proton		$-1.572.62 \times 10^{-27} \text{ kg}$	
-	neutron			• • • • •
	Vacuum		$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$	
•			$4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^2}$	
• .	Vacuum permittivity	$\varepsilon_0 = 1/c^2 \mu_0$	8.854 19 × 10 ⁻¹² J ⁻¹ C ² m ⁻¹	
• •		4πεο	1.11265×10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹	
	Sohr magneton	$\mu_s = e \hbar / 2 m_s$	9.27402 × 10-24 JT-1	· ·
	Nuclear magneton	$\mu_{\rm N} = e \hbar / 2 m_{\rm p}$	5.050 79 × 10 ⁻²⁷ J T ⁻ !	
	Electron g value	9.	2.002 32	
	Bonr radius	$a_{\eta} = 4\pi \varepsilon_{\eta} \hbar^2 / m_{\bullet} \varepsilon_{\eta}$	5.291 77 × 10 ⁻¹¹ m	
	Rydberg · constant	R_ = m,e [±] /8h ³ c;	1.097 37 × 10⁵ cm⁻'	:
	Fine structure constant	$c = \mu_0 e^2 c/2h$	7.297 35 × 10 ⁻³	
	Gravitational constant	G	6.672 59 × 10 ⁻¹¹ N m ² kg ⁻²	
	Standard L acceleration of free fall†	g	9,806,65,rg_s_ ⁻ ²	t Exact (defined) values
	fp	n <u>µ</u> m	c d k M (g Prefixes
	femto pico n	nano micro milli	centi deci kilo mega gi	iga
	10-15 10-12 1			10 ⁹

PERIODIC TABLE OF ELEMENTS

								G	ROUPS								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
PERIODS	1	11	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	1113	IIIA	Ινλ	V۸	VIA	VII/
	1,008								-								
1	11																
	<u> </u>															۱	<u></u>
	6.941	9.012										c mass —)	- 10.811	12.011	14.007	15.999	18.99
2	Li	Be						,				1bol —	B	C	N	0	F
	3	4									Atom	ic No. —	₽ 5	6	7	8	9
	22.990	24.305											26.982	28.086	30.974	32.06	35.45
3	Na	Mg	TRANSITION ELEMENTS										- Al	Si	Р	S	CI
	11	12										13	14	15	16	17	
	39.098	-40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.90
4	К	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Za	Ga	Ge	As	Se	Br
•	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.9
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)
6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir ·	Pt	Au	IIg	TI	Pb	Bi	Po	Λι
	55	56	57	72	73	74	75	76	77	78	<u>29</u>	03	81	82	83	84	85
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)							
7	Fr	Ra	**Ac	Rſ	Ha	Unh	Uns	Uno	Une	Uun							
	87	88	89	104	105	106	107	108	109	110							
W			*		·····				d								
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.9

*Lanthanide Series

ø

**Actinide Series

A Start Start

140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.91
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cſ	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

.

() indicates the mass number of the isotope with the longest half-life.

.