## UNIVERSITY OF SWAZILAND FIRST SEMESTER EXAMINATION. 2011/12

TITLE OF PAPER: Thermal and Electroanalytical Methods
COURSE CODE: C613

TIME ALLOWED: 3 (THREE) HOURS
INSTRUCTIONS:

1) Answer any Four (4) questions
2) Each question is weighted 25 marks
3) Write neatly and clearly
4) A periodic table and other useful data have been provided with this paper.

## SPECIAL REQUIREMENT: GRAPH PAPER

## Question 1 (25 marks)

(a) The thermobalance is the analytical instrument during the TG analysis of a sample.
(i) Draw a labeled schematic diagram of a modern type of this instrument.
(ii) State the five main components of the instrument.
(iii) Give six of the features you consider desirable in the design/construction of an ideal thermobalance.
(b) The design and operation of the thermobalance furnace are critically important in obtaining accurate and reproductive thermograms: Discuss the features that should be entrenched in its design to achieve these goals.
(c) A 50 mg sample of $\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ was heated to $1200{ }^{\circ} \mathrm{C}$ in a thermobalance furnace:
(i) Without being numerically or quantitatively exact, draw a fully labeled diagram of the expected TG curve.
(ii) Show the equations for the decompositional stages involved.
(iii) Calculate the magnitude of all weight losses involved.

## Question 2 (25 marks)

(a) Distinguish between TG (thermogravimetric Analysis), and DTA (Differential Thermal Analysis), with respect to:
(i) Their thermograms
(ii) Quantity measured
(iii) Instrument used
(iv) Nature of sample and reference.
(b) Explain why atmospheric control is a more critical factor in TG than in DTA analysis.
(c) Discuss the effects and possible corrections of three of the factors that influence DTA thermograms.
(d) What factors determine the choice/nature of the following during a DTTA experiment?
(i) Sample holder.
(ii) Temperature measuring device.
(e) A 24.60 mg sample of $\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ was heated from room temperature to $1,100^{\circ} \mathrm{C}$ at a rate of $5^{\circ} \mathrm{C} / \mathrm{min}$. The following mass changes with the corresponding temperature ranges were obtained:

| Temp Range $\left({ }^{\circ} \mathrm{C}\right.$ ) | Mass Loss (mg) |
| :--- | :--- |
| $100-250$ | 3.03 |
| $400-500$ | 4.72 |
| $700-850$ | 7.41 |

Identify the gas evolved and the solid residue produced at each step of the thermal decomposition.

## Question 3 (25 marks)

(a) (i) Discuss the principles involved in Differential Scanning Calorimetry (DSC).
(ii) Draw a schematic diagram of the setup of the temperature sensors and heaters in a DSC.
(iii) Distinguish between DTA and DSC with respect to their basic principles and instrumental setup.
(b) Summarize the functions of the following in the instrument setup of a DSC
(i) The average temperature controller
(ii) The differential temperature controller
(c) (i) Draw a typical DSC Thermogram (i.e. a DSC curve).
(ii) What information (data) are obtained from the DSC scan and how are they obtained from the curve/scan?
(d) The heat of fusion of naphthalene is $4.63 \mathrm{KCal} / \mathrm{mole}$ at $80^{\circ} \mathrm{C}$. On using 100 mg sample, a DTA peak of 36.3 cm 2 was observed at $0^{\circ} \mathrm{C}$, the heat of fusion of water is $1.43 \mathrm{KCa} / \mathrm{mole}$. What is the peak area for 100 mg of ice under the same conditions?

## Question 4 ( 25 marks)

(a) The evolved gas analysis (EGA) and evolved gas detection are often coupled with TG, DTA and DSC.
(i) Briefly describe what is involved in each of these methods.
(ii) Give three examples of such hyphenated techniques and one application of any one of them.
(b) For a typical thermometric experiment.
(i) Identify the components (parts) of a basic instrumental set up.
(ii) Draw and label a schematic titration assembly for the TT.
(c) Briefly discuss the temperature control requirements for a Thermometric Titration.
(d) The Thermistor is considered the ideal temperature sensing system for the TT and DIE. Discuss:
(i) Its nature and operational basis (principles).
(ii) The factors that make it the ideal temperature sensing system for the TT and DIE.
(e) (i) Use a diagram to show the four major regions of an ideal Thermometric Titration curve.
(ii) During the titration of an acid $A$ with base $B$, a curve similar to the one drawn in e(i) above was obtained with the following slopes for the four regions respectively: $1.0 \times 10^{-5}, 8.0 \times 10^{-4},-1.0 \times 10^{-5}$ and $-0.5 \times 10^{-5}{ }^{\circ} \mathrm{C} / \mathrm{sec}$. The overall temperature change was $0.1000^{\circ} \mathrm{C}$, and the cell's heat capacity is $1.000 \mathrm{Cal} /{ }^{\circ} \mathrm{C}$. The titration rate was $6.0 \times 10^{-8}$ moles of $B$ per second. Also, under similar
experimental conditions, the titration of B into distilled water gave a slope of 2.0 $\times 10^{-5}{ }^{\circ} \mathrm{C} /$ sec. Calculate $\Delta \mathrm{H}$, the heat of reaction for this titration.

## Question 5 ( 25 marks)

(a) What is a cathodic depolarizer?

Using a given example, show how it is employed during constant voltage electrolysis.
Discuss its mechanisms of action.
(b) (i) What is a potentiostat?
(ii) Compare and contrast the working principles of a constant voltage electrolysis and controlled potential (constant cathode potential) electrolysis. Which of the two is more selective? Explain how the enhanced selection is achieved by this method.
(c) (i) Enumerate the favourable and unfavourable features of potentiometric titration method of analysis.
(ii) The following data were obtained near the end point of a potentiometric titration of a reducing solution with 0.1000 M oxidant, using a Pt-S.C.E electrode pair:-

| Titration Vol.(mL) | E (mV) |
| :--- | :--- |
| 38.70 | 541.0 |
| 38.80 | 547.0 |
| 38.90 | 555.0 |
| 39.00 | 566.0 |
| 39.10 | 583.0 |
| 39.20 | 884.0 |
| 39.30 | 1104.0 |
| 39.40 | 1121.0 |
| 39.50 | 1133.0 |

Plot (i) $E$ and (ii) $\Delta E / \Delta V$, against the titrant volume and obtain the end point from each of the curves. Compare the results and comment on them.

## Question 6 (25marks)

(a) Distinguish between
(i) A limiting current and residual current.
(ii) Differential pulse polarography and square wave polarography.
(b) Explain the occurrence of a polarographic wave (i.e. the oscillating current), in the polarogram of a DME.
(c) Discuss the effects of the following factors on the polarogram's shape and hence on the polarographic data of a DME
(i) Current maxima
(ii) Presence of Oxygen

State steps usually taken to minimize their effects.
(d) Briefly discuss the working principles of differential pulse polarography. Account for its enhanced sensitivity over the conventional (d.c.) polarography.
(e) In using the polarographic method for the estimation of the oxygen level in water, the limiting current for the first 2 -electron oxygen reduction was $2.11 \mu \mathrm{~A}$. The capillary used had $m=2.0 \mathrm{mgs}^{-1}$ and $t=5.00 \mathrm{~s}$ at -0.05 V . If the diffusion coefficient, $\mathrm{D}=2.12 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$, calculate the oxygen level in the water in:
(i) $\mathrm{mM}($ millimoles/L)
(ii) ppm

| Quanticy | Symbol | Value | General data and fundamental -constants- |
| :---: | :---: | :---: | :---: |
| Speed of lighti | c | $2.99792458 \times 10^{4} \mathrm{~ms}^{-1}$ |  |
| Elementary charge | E | 5.5027777x $10^{-19} \mathrm{C}$ |  |
| Faraday constanc | $F=e N_{\alpha}$ | $9.6495 \times 10^{4} \mathrm{Cmol}^{-1}$ |  |
| Soltmann constant | * | $1.39066 \times 10^{-27} \mathrm{Jk}^{-1}$ |  |
| Gas constant | $\pi=k N{ }_{\text {a }}$ | $8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ |  |
|  |  | $\begin{aligned} & 3.20578 \times 10^{-2} \\ & \mathrm{dma}^{3} \operatorname{atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$ |  |
|  |  | 62.364 $\mathrm{T}^{\text {Torr }} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$. |  |
| Planck constant | - | $6.62508 \times 10^{-24} \mathrm{~J} \mathrm{~s}$ |  |
|  | $h=h / 2 . x$ | $1.05457 \times 10^{-2 \mu} \mathrm{~J} \mathrm{~s}$ |  |
| Avogadio constant | His | $0.02214 \times 10^{27} \mathrm{~mol}^{-1}$ |  |
| Atornic mass unit | $u$ | $1.66054 \times 10^{-27} \mathrm{~kg}$ |  |
| Mass of electron | m, | $9.10939 \times 10^{-37} \mathrm{~kg}$ |  |
| proton | $m_{3}$ | $1.672 .62 \times 10^{-57} \mathrm{~kg}$ |  |
| neurron | $m^{\prime}$ | ${ }^{-1.67493 \times 10} 0{ }^{-27} \mathrm{~kg}$ |  |
| Vacuum parmeabilityt | H | $4 \pi \times 100^{-1} \mathrm{Js}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1}$. | $\because \quad$. |
|  |  | $4 \pi \times 10^{-7} \mathrm{~T}^{2} 5^{-1} \mathrm{~m}^{2}$ |  |
| Vacuum permittivity | $z_{0}=1 / c^{2} \times$ | $8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$ |  |
|  | < $\mathrm{cec}_{0}$ | $1.11265 \times 10^{-10} \mathrm{j}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$ | . |
| Sohr magneton | $\mu_{x}=e n / 2 m$, | $9.27402 \times 10^{-24} \mathrm{JT}^{1}$ |  |
| Nuctear magneton |  | $\left.5.05079 \times 10^{-2 r}\right\lrcorner T^{3}$ |  |
| $\begin{aligned} & \text { Electron g. } \\ & \text { valua } \end{aligned}$ | c. | 2.00232 |  |
| Soir radius | $z_{2}=4 \pi t_{0} h^{2} / m_{4} 6$ | $5.29177 \times 10^{-81} \mathrm{~m}$ |  |
| Ryctberg constant | $R .=m, e^{4} / 8 h^{2} a$ | $1.09737 \times 10^{5} \mathrm{~cm}^{-1}$ |  |
| Fine structure constant | $=m=\mu_{0} z^{2} c / 2 h$ | $7.28735 \times 10^{-3}$ | $\cdots$ |
| Grevitational canstant | $G$ | $6.07259 \times 10^{-12} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$ |  |
| Stañdara ${ }^{\text {t }}$ acceierätion of free fallt | 9 | $9.80655 \mathrm{rss}^{-7}$ | ¢ Exart ldaingal valueq |
| P | $\pi \quad \mu \quad m$ | c d l M M | Prefixes |
| femto pico | nano micro milli | centi deci kilo mega giga | , |
| $10^{-13} 10^{-12}$ | $10^{-3} 10^{-3} \quad 10^{-3}$ | $\begin{array}{lllll}10^{-2} & 10^{-1} \cdot 10^{2} \quad 10^{6} \quad 10^{9}\end{array}$ |  |


() indicater the mass number of the Isotope with the longes half-life."

