UNIVERSITY OF SWAZILAND FIRST SEMESTER EXAMINATION. 2011/12

TITLE OF PAPER: Thermal and Electroanalytical Methods

COURSE CODE: C613

TIME ALLOWED: 3 (THREE) HOURS

INSTRUCTIONS:

1) Answer any Four (4) questions

2) Each question is weighted 25 marks

3) Write neatly and clearly

4) A periodic table and other useful data have been provided with this paper.

SPECIAL REQUIREMENT:

GRAPH PAPER

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

Question 1 (25 marks)

- (a) The thermobalance is the analytical instrument during the TG analysis of a sample.
 - (i) Draw a labeled schematic diagram of a modern type of this instrument.
 - (ii) State the five main components of the instrument.
 - (iii) Give six of the features you consider desirable in the design/construction of an ideal thermobalance. (10)

(b) The design and operation of the thermobalance furnace are critically important in obtaining accurate and reproductive thermograms: Discuss the features that should be entrenched in its design to achieve these goals. (5)

- (c) A 50mg sample of $C_aC_2O_4 \cdot H_2O$ was heated to 1200 °C in a thermobalance furnace:
 - (i) Without being numerically or quantitatively exact, draw a fully labeled diagram of the expected TG curve.
 (2)
 - (ii) Show the equations for the decompositional stages involved. (3)
 - (iii) Calculate the magnitude of all weight losses involved. (5)

Question 2 (25 marks)

- (a) Distinguish between TG (thermogravimetric Analysis), and DTA (Differential Thermal Analysis), with respect to:
 - (i) Their thermograms
 - (ii) Quantity measured
 - (iii) Instrument used
 - (iv) Nature of sample and reference.
- (b) Explain why atmospheric control is a more critical factor in TG than in DTA analysis.

(2)

(4)

(c) Discuss the effects and possible corrections of three of the factors that influence DTA thermograms.
 (6)

- (d) What factors determine the choice/nature of the following during a DTA experiment?
 - (i) Sample holder.
 - (ii) Temperature measuring device.

(3)

(e) A 24.60 mg sample of C_aC₂O₄ ⋅H₂O was heated from room temperature to 1,100°C at a rate of 5°C/min. The following mass changes with the corresponding temperature ranges were obtained:

Temp Range (°C)	Mass Loss (mg)
100-250	3.03
400-500	4.72
700-850	7.41

Identify the gas evolved and the solid residue produced at each step of the thermal decomposition.

Question 3 (25 marks)

(a)	(i)	Discuss the principles involved in Differential Scanning Calorimetry (I										
			(3)									
	(ii)	w a schematic diagram of the setup of the temperature sensors and heaters in a										
		DSC	(2)									
	(iii)	Distinguish between DTA and DSC with respect to their basic principles and										
		instrumental setup.	(3)									
(b)	Sumr (i) (ii)	narize the functions of the following in the instrument setup of a DSC The average temperature controller The differential temperature controller	(2)									
(c)	(i) (ii)	Draw a typical DSC Thermogram (i.e. a DSC curve). What information (data) are obtained from the DSC scan and obtained from the curve/scan?	(4) how are they (4)									

- (iii) What structural difference exists between a DTA and DSC thermogram? (2)
- (d) The heat of fusion of naphthalene is 4.63 KCal/mole at 80 °C. On using 100 mg sample, a DTA peak of 36.3 cm2 was observed at O°C, the heat of fusion of water is 1.43 KCal/mole. What is the peak area for 100 mg of ice under the same conditions?

(5)

(3)

(3)

Question 4 (25 marks)

- (a) The evolved gas analysis (EGA) and evolved gas detection are often coupled with TG, DTA and DSC.
 - (i) Briefly describe what is involved in each of these methods. (2)
 - (ii) Give three examples of such hyphenated techniques and one application of any one of them.
 (2)
- (b) For a typical thermometric experiment.
 - (i) Identify the components (parts) of a basic instrumental set up. (3)
 - (ii) Draw and label a schematic titration assembly for the TT. (3)
- (c) Briefly discuss the temperature control requirements for a Thermometric Titration.
- (d) The Thermistor is considered the ideal temperature sensing system for the TT and DIE.
 Discuss:
 - (i) Its nature and operational basis (principles). (3)
 - (ii) The factors that make it the ideal temperature sensing system for the TT and DIE.
- (e) (i) Use a diagram to show the four major regions of an ideal Thermometric Titration curve. (4)
 - (ii) During the titration of an acid A with base B, a curve similar to the one drawn in e(i) above was obtained with the following slopes for the four regions respectively: 1.0 x 10⁻⁵, 8.0 x 10⁻⁴, -1.0 x 10⁻⁵ and -0.5 x 10⁻⁵ °C/sec. The overall temperature change was 0.1000 °C, and the cell's heat capacity is 1.000 Cal/°C. The titration rate was 6.0 x 10⁻⁸ moles of B per second. Also, under similar

experimental conditions, the titration of B into distilled water gave a slope of 2.0 x 10^{-5} °C/sec. Calculate Δ H, the heat of reaction for this titration. (5)

Question 5 (25 marks)

- (a) What is a cathodic depolarizer?
 Using a given example, show how it is employed during constant voltage electrolysis.
 Discuss its mechanisms of action. (5)
- (b) (i) What is a potentiostat? (1)
 - (ii) Compare and contrast the working principles of a constant voltage electrolysis and controlled potential (constant cathode potential) electrolysis. Which of the two is more selective? Explain how the enhanced selection is achieved by this method.
- (c) (i) Enumerate the favourable and unfavourable features of potentiometric titration method of analysis.
 - (ii) The following data were obtained near the end point of a potentiometric titration of a reducing solution with 0.1000 M oxidant, using a Pt-S.C.E electrode pair:-

Titration Vol.(mL)	E (mV)
38.70	541.0
38.80	547.0
38.90	555.0
39.00	566.0
39.10	583.0
39.20	884.0
39.30	1104.0
39.40	1121.0
39.50	1133.0

Plot (i) E and (ii) $\Delta E/\Delta V$, against the titrant volume and obtain the end point from each of the curves. Compare the results and comment on them. (12)

Question 6 (25marks)

- (a) Distinguish between
 - (i) A limiting current and residual current.
 - (ii) Differential pulse polarography and square wave polarography. (4)
- (b) Explain the occurrence of a polarographic wave (i.e. the oscillating current), in the polarogram of a DME.
 (4)
- (c) Discuss the effects of the following factors on the polarogram's shape and hence on the polarographic data of a DME
 - (i) Current maxima
 - (ii) Presence of Oxygen

State steps usually taken to minimize their effects.

- (d) Briefly discuss the working principles of differential pulse polarography. Account for its enhanced sensitivity over the conventional (d.c.) polarography. (6)
- (e) In using the polarographic method for the estimation of the oxygen level in water, the limiting current for the first 2-electron oxygen reduction was 2.11 μ A. The capillary used had m=2.0 mgs⁻¹ and t=5.00 s at -0.05 V. If the diffusion coefficient, D=2.12 x 10⁻⁵ cm²s⁻¹, calculate the oxygen level in the water in:
 - (i) mM (millimoles/L)
 - (ii) ppm

(5)

(6)

· .													
Quantity	Sym	bol		Value		•	A		General data and				
Speed of light	c	C C			24 58 :	× 10 ⁴ i	m s ¹	• ·	fundamental				
Elementary charge	72			1.502.1	ר` ג 'ז	0~ <i>1</i> 3 C			constants-				
Faraday constant	F =	eN,	×	9.6485	× 10*	C mol	-1						
Soltzmann constant	k			1.390 (56 × 10	l-≖]	K-1						
Gas constant	= F.	kN.		8.314	51 J K-	' ¹ mol	1		•				
			•	8.205				nol ⁻¹					
				52.364	L Tori	- K ⁻¹ ر	nol ⁻¹⁻	•					
Planck constan	ι τ λ			6.626	08 × 10	ر **_ر	S .		· · ·				
	ń ==	$\hbar = h/2\pi$			57 × 10	ר אר-ג	S						
Avogadro constant	N'L			ō.022	14 × 1(от сс (bl - 1						
Atomic mass unit	U	•		1.660	54 x 1(0-27 k	9.		•				
Mass of electron	т,	•		9.109	39 × 10	0- ²¹ k	ĝ						
proton	m,	•		1.572	-62 × 1	0-27 k	g						
neutron	m,	•		-1.674	93 x 1	0 ²⁷ K	g		• •				
Vacuum permeabilit	'. ; 些 ?			-	1077 J		• . •		••••				
t					10-7 T								
Vacuum permittivity	ž _o	$z_0 = 1/c^2 \mu_0$					-1 C² m		• .				
•		4.7.Eg			65 × 1	0-19 J	-' C ² m	-1					
Sohr magnett	•	= eti/2;		9.274	02 × 1	0-24]	1-1	•	•				
Nuclear ⁵ magneton	μ _н	\$\$t/2	កា _ទ	. 5.050	79 X 1	0-22.7	1-1						
Electron g value	ç.			2,002	232				. •				
Sonr radius	8-1	$=4\pi \epsilon_{0}\hbar$	*/m_c	5.291	i 77 x 1	10-11	n						
Rydberg constant		$R_{\cdot} = m_{\cdot} e^{4} / 8h^{2} \alpha$			7 37 × 1								
Fine structure constant	t c	c = μ₀e²c/2h			7 35'×'	10-3	· ·						
Grevitational constant	G			6.672 59 × 10 ⁻¹¹ N m ² kg ⁻²									
Standard	. <i>9</i>	, g .			6 65 m	s-7			۰.				
acceleratio of free failt								-	t Exect (defined) values				
fP	n	μ	m	c	đ	k	м	G	Prefixes				
femto pici		micro	milli	centi	deci	kilo	mega	giga	r				

Ţ

- •

--

ین ب • __ •

.

. .

. **-**

.

į

٠ .

۰,

.

.

femto pico nano micro milli canti daci kilo mega giga 10⁻¹⁵ 10⁻¹² 10⁻⁸ 10⁻⁸

*

10⁻³ 10⁻² 10⁻¹ 10² 10⁶ 10⁹

.

.

PERIODIC TABLE OF ELEMENTS

•

.

								G	ROUPS	3				ı			
,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
PERIODS	١٨	٨II	IIIB	IVB.	Vn	VIB	VIII		VIIB	4 . 1	18	<u>_ 11B</u>		IVA	٧٨	VIA	VII/
	8(R), I							¥									
1	11																
			-											T			1
	6,941	9.01.2				۸			•'			ic mass —	- 10.811 B	12.011	14.007	15,999	18.99
. 2	Li -	Be]				*					Symbol - Atomic No		C	N	0	r P
	3	4]			•					Alon	IIC NO.	5	6	7	8	9
٠	22.990	24.305											26.982	28.086	30.974	32.06	35.45
3	Na	Mg				TRAN	SITIO	N ELEN	IENTS		•		AL	Si	Р	S	CI
	11	12							•		•		13	14	15	16	17
	39.098	-40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39 .	69.723	72.61	74.922	78.96	79.90
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
•	19	20	21	22	23	24	25	26	27	28	29	30.	31	32	33	34	35
	85.468	87.62	88.906	91.224	· 92.906	95.94	98.907	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.9
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	. In	Sn	Sb	Tc	1
	37	- 18	39	40	41	42	43	44	45	16	47	48	49	50	51	52	53
	132.91	137.33	138,91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204,38	207.2	208.98	(209)	(210)
6	Cs	Bn	*La	HI	Ta	W	Re	Os	Ir	Pt	Au 79	Hg	TI	РЬ	Bi	Po	Λt
	55	56	57	72	73	. 74	75	76	77	78	79	80	81	82	83	84	85
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)	· · .						
7	Fr	Ra	** А с	Rſ	Ha	Unh	Uns	Uno	Une	Uun							
	87	88	89	104	105	106	107	108	109	110							
				-									-	•			
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162,50	164.93	167.26	168.93	173.04	174.9
*Lanthanide Series		S	Cc	, Pr	Nd	Pm	Sm	Ēu	Gd	Tb ·	Dy	Ho	Er	Tm	Yb	Lu	
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
**Actinide Series		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257) *	(258)	(259)	(260)		
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cr	Es	Fm	Md	No	Lr	
				90	91	92	93 ,	94	95	96	97	98	99	100	101	102	103
					() indi	cates the	e mass m	umber of	the isot	ove with	the long	rest holf.	life - ·	J		ł	
*					17					- 1 , • • • •		//wy					

,