UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2011/2012

TITLE OF PAPER:	BIO-INORGANIC CHEMISTRY
COURSE NUMBER:	C617
TIME ALLOWED:	THREE (3) HOURS
INSTRUCTIONS:	ANSWER <u>ALL FOUR (4)</u> QUESTIONS . EACH QUESTION IS WORTH 25 MARKS.

A PERIODIC TABLE IS PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

1

QUESTION ONE

- (a) Identify significant roles in biological processes for the elements Na, Co and Zn. [6]
- (b) The structure of haemoglobin, Hb may be classified as 'relaxed' [R] or 'tense' [T] as alternative terms for oxygenated and deoxygenated. The R and T structures differ in both the relation among the four subunits (the quaternary structure) and the conformation within a subunit (the tertiary structure). Explain how these structural differences relate to the difference in the oxygen binding curve of Hb as compared to myoglobin, Mb.
- (c) For the hemocyanins, indicate
 - (i) the number of metal atoms needed to bind one O_2 molecule.
 - (ii) the identity (i.e. Fe, Co, Cu, Zn, etc.) of the metal atoms.
 - (iii) the oxidation state of the metal in the deoxy form of the protein. [1]
 - (iv) the oxidation state of the metal in the oxy form of the protein.
 - (v) whether the oxygen, when bound, is best considered to be a neutral O_2 , superoxide (O_2^{-}) , peroxide $(O_2^{2^{-}})$, or a hydroperoxide (HO_2^{-}) . [1]
- (d) (i) What prevents simple porphyrins from functioning as O_2 carriers? [3]
 - (ii) How has this problem been avoided in successful models of Fe-porphyrin O₂ carriers? [3]
 - (iii) The complex [Co(salen)(py)] is a model complex for O₂ binding. How is the model related to Haemoglobin or Myoglobin.
 [2]

QUESTION TWO

- (a) Oxygen coordinates to both haemoglobin and myoglobin. What is the advantage of employing these different dioxygen complexes? [6]
- (b) The diameter of a high-spin Fe(II) ion is larger than that of the 'hole' at the centre of the porphyrin ring, whereas a low-spin Fe(II) ion is smaller than the hole.
 - (i) Give the electron configurations for the two spin states in an octahedral environment. [2]
 - (ii) Why is the high-spin ion larger?

[4]

[1]

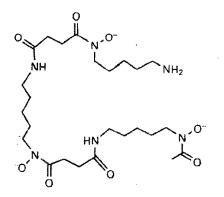
[1]

[1]

- (c) (i) What electron transport systems are used in photosynthesis? [1]
 (ii) The conversion of carbonic acid, H₂CO₃ to CO₂ + H₂O is a natural process; why is carbonic anhydrase needed? [2]
 - (iii) process; why is carbonic anhydrase needed? [2] (iii) The direct reduction products of water, H_2O_2 (or HO_2^-) and O_2^- , are toxic. How are these handled in biological systems? [4]
- (d) Discuss <u>three</u> factors that illustrate the difference in the roles between Ca^{2+} and Mg^{2+} . [6]

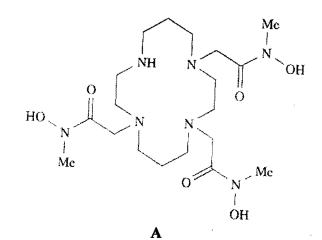
÷.

QUESTION THREE


- Iron overload is a medical condition where the body cannot cope with abnormally (a) high levels of iron in the system. Chelation therapy by administering desferrioxamine shown below is used to treat the problem.
 - Suggest the origin of the name chelation therapy. (i)
 - What form should the iron be in for the therapy to be most effective? (ii)

[1]

[1]


[3]

Suggest how the therapy works using compound below. (iii)

Desferrioxamine

- (b) Compound A below reacts with $Zn(ClO_4)_2 \cdot 6H_2O$ to give a complex $[Zn(A)(OH)]^+$ that is a model for the active site of carbonic anhydrase.
 - Suggest a structure for this complex. (i)
 - [2] (ii) What properties does A possess that
 - - mimic the coordination site in carbonic anhydrase? (1) [3] control the coordination geometry around the Zn²⁺ ion in the model (2) complex? [3]

- (c) (i) Oxygen, O_2 is a σ -donor and a π -acceptor. Carbon monoxide, CO is also an excellent example of this type of ligand. Can you use these facts to propose a mechanism for CO poisoning? [3]
 - (ii) Why are d metals such as manganese (Mn), iron (Fe), cobalt (Co), and Copper (Cu) used in redox enzymes in preference to zinc (Zn), gallium (Ga), and calcium (Ca)?
- (d) (i) What functional groups are found in all amino acids? [1]
 (ii) Draw the structure of the amino acid leucine in acidic solution at a pH below the isoelectric point. [2]
 - (iii) Why might we expect some elements essential for life at low concentrations to be toxic at higher concentrations? [3]

QUESTION FOUR

- (a) (i) Discuss the probable difference in the pockets present in carboxypeptidase and carbonic anhydrase. [4]
 - (ii) Describe the characteristics of the ligands that are adopted for binding Ca²⁺ to proteins and those used to bind Fe²⁺ in the oxygen-carrying protein haemoglobin.

[1]

[1]

[1]

[3]

[3]

- (b) For the hemerythrins, indicate
 - (i) the number of metal atoms needed to bind one O_2 molecule.
 - (ii) the identity (i.e. Fe, Co, Cu, Zn, etc.) of the metal atoms.
 - (iii) the oxidation state of the metal in the deoxy form of the protein. [1]
 - (iv) the oxidation state of the metal in the oxy form of the protein.
 - (v) whether the oxygen, when bound, is best considered to be a neutral O_2 , superoxide (O_2^-) , peroxide (O_2^{2-}) , or a hydroperoxide (HO_2^-) . [1]
- (c) (i) Give an example of each of the <u>two</u> types of reactions brought about by vitamin B_{12} . [4]
 - (ii) What are the prosthetic groups of cytochromes and haemoglobin? [1]
 - (iii) What are the <u>two</u> important systems for the biological electron-transfer processes? [2]

141	Discourse Alex			- 4 - 1 - 41	C. 11	Calds of an addates
(d)	Discuss the	use of more	anic eleme	nts in the	e iollowing	fields of medicine:

- (i) Cancer treatment.
- (ii) Anti-arthritis drugs.

PERIODIC TABLE OF ELEMENTS

-4

		, 1						G	ROUPS	3 .								
	1	2	3	4	5	6	7	8	9	10`	11	12	13	14	15	16	17	18
PERIODS	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	ША	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1			·					1									4.003 He 2
2	6.941 Li 3	9.012 Be 4				. .					Syr	ic mass nbol - nic No.	B 5	12.011 C 6	14.007 N 7	15.999 O 8	18,998 F 9	20.180 Ne 10
3	22.990 Na 11	24.305 Mg 12		TRANSITION ELEMENTS 26.982 28.086 30.974 Al Si P 13 14 15									32.06 S 16	35.453 Cl 17	39.948 • Ar 18			
4 '	39.098 K 19	40.078 Ca 20	44.956 Sc 21	47.88 Ti 22	50.942 V 23	51.996 Cr 24	54.938 Mn 25	55.847 Fe 26	58.933 Co 27	58.69 Ni 28	63.546 Cu 29	65.39 Zn 30	69.723 Ga 31	72.61 Ge 32	74.922 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.468 Rb 37	87.62 Sr 38	88.906 ¥ 39	91.224 Zr 40	92.906 Nb 41	95,94 Mo 42	98.907. Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.71 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.29 Xe 54
6	132,91 Cs 55	137.33 Ba 56	138.91 *La 57	178.49 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.2 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 TI 81	207.2 Pb 82	208.98 Bi 83	(209) Po 84	(210) At 85	(222) Rn 86
7	223 Fr 87	226.03 Ra 88	(227) **Ac 89	(261) Rf 104	(262) Ha 105	(263) Unh 106	(262) Uns 107	(265) Uno 108	(266) Une 109	(267) Uun 110				<u> </u>	£			•
*Lanthanide Series 23		140.12 Ce 58 232.04	140.91 Pr 59 231.04	144.24 Nđ 60 238.03	(145) Pm 61 237.05	150.36 Sm 62 (244)	151.96 Eu 63 (243)	157.25 Gd 1.64 (247)	158.93 Tb 65 (247)	162.50 Dy 66 (251)	164.93 Ho 67 (252)	167.26 Er 68 (257)	168.93 Tm 69 (258)	173.04 Yb 70. (259)	174.97 Lu 71 (260)			
				Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103	

() indicates the mass number of the isotope with the longest half-life.

. .

- 1 ° .

.