UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012/13

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I

COURSE NUMBER: C111

TIME:
THREE (3) HOURS

INSTRUCTIONS:

(i) Answer all questions in section A (total 50 marks)
(ii) Answer any 2 questions in section B (Each question is 25 marks)

Non-programmable electronic calculators may be used.

A data sheet, a periodic table and answer sheet for section A are attached

SECTION A (50 Marks)

This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all 50 questions.

1. The symbol for the element potassium is \qquad .
(A) Po
(B) Pt
(C) K
(D) P
(E) none of these
2. A combination of salt and water is an example of a \qquad .
(A) homogeneous mixture
(B) heterogeneous mixture
(C) compound
(D) pure substance
(E) solid
3. Which one of the following has the element name and symbol correctly matched?
(A) P, potassium
(B) C, copper
(C) Mg , manganese
(D) Au, gold
(E) Sn, antimony
4. Which one of the following is often easily separated into its components by simple techniques such as filtering or decanting?
(A) solutions
(B) Elements
(C) homogeneous mixture
(D) compounds
(E) heterogeneous mixture
5. Of the following, only \qquad is a chemical reaction.
(A) melting of copper
(B) dissolving salt in water (C) burning sugar
(D) crushing of stone
(E) dropping a penny into a glass of water
6. Which of the following has the same number of significant figures as the number 1.030 ?
(A) 1×10^{6}
(B) 199.791
(C) 8.66
(D) 5.119
(E) 100
7. Which atom has the smallest number of neutrons?
(A) Chlorine- 35
(B) chlorine-37
(D) Sulphur-33
(E) calcium-40
8. An atom of an isotope of bromine, ${ }^{79} \mathrm{Br}$, has \qquad protons, \qquad neutrons, and electrons.
(A) $79,35,35$
(B) $35,35,79$
(C) $35,44,35$
(D) $44,35,44$
(E) $35,79,35$
9. The element X has three naturally occurring isotopes. The masses (amu) and $\%$ abundances of the isotopes are given in the table below. The average atomic mass of the element is \qquad amu.

Isotope	Abundance(\%)	Mass (amu)
${ }^{35} \mathrm{X}$	75.53	34.9688
${ }^{37} \mathrm{X}$	24.4	36.9651

(A) 35.97
(B) 71.93
(C) 35.46
(D) 36.55
(E) 36.00
10. Which one of the following is a nonmetal?
(A) Pb
(B) Ba
(C) Ru
(D) Se
(E) Sc
11. An element that appears in the top right corner of the periodic table is \qquad .
(A) either a metal or metalloid
(B) definitely a metal
(C) either a metalloid or a non-metal
(D) definitely a non-metal
(E) definitely a metalloid
12. Which compounds do not have the same empirical formula?
(A) $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}$
(B) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}$
(C) $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{3} \mathrm{H}_{6}$
(D) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(E) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOCH}_{3}, \mathrm{CH}_{3} \mathrm{CHO}$
13. Which species has 16 electrons?
(A) ${ }^{31} \mathrm{P}$
(B) ${ }^{34} \mathrm{~S}$
(C) ${ }^{36} \mathrm{Cl}^{-}$
(D) ${ }^{80} \mathrm{Br}^{-}$
(E) ${ }^{16} O$
14. Which of the following compounds would you expect to be ionic?
(A) $\mathrm{H}_{2} \mathrm{O}$
(B) CO_{2}
(C) $\mathrm{K}_{2} \mathrm{O}$
(D) SO_{2}
(E) $\mathrm{Cl}_{2} \mathrm{O}$
15. Which species below is the sulphate ion?
(A) $\mathrm{SO}_{2}{ }^{-2}$
(B) SO_{3}^{-2}
(C) S^{2-}
(D) SO_{4}^{-2}
(E) HS^{-}
16. Which formula/name pair is incorrect?
(A) MnCl_{2} manganese(II) Chloride
(B) KMnO_{4}
potassium permanganate
(C) $\mathrm{Mn}\left(\mathrm{ClO}_{3}\right)_{2}$ manganese(IV) chlorate
(D) MgCl_{2}
magnesium chloride
(E) $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ magnesium perchlorate
17. When the following equation is balanced, the coefficients are \qquad .
$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{Na}_{2} \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}+\mathrm{NaNO}_{3}$
(A) $4,6,3,2$
(B) $2,1,3,2$
(C) 2, 3, 1, 6
(D) $1,1,1,1$
(E) 2, 3, 2, 3
18. There are \qquad carbon atoms in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$.
(A) 100
(B) 9.6×10^{25}
(C) 3.0×10^{25}
(D) 50
(E) 6.02×10^{23}
19. The formula weight of potassium permanganate, KMnO_{4}, is \qquad u.
(A) 155.06
(B) 158.04
(C) 108.00
(D) 185.04
(E) 142.04
20. The mass $\%$ of C in methane $\mathrm{C}_{2} \mathrm{H}_{8}$ is \qquad .
(A) 25.13
(B) 133.6
(C) 74.87
(D) 92.26
(E) 7.743
21. There are \qquad atoms of hydrogen are in 300 molecules of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$.
(A) 1200
(B) 600
(C) 6.02×10^{24}
(D) 3.61×10^{26}
(E) 7.2×10^{26}
22. How many moles of sodium carbonate contain 3.01×10^{19} carbon atoms?
(A) 2.83×10^{17}
(B) 4.71×10^{-7}
(C) 1.473×10^{-7}
(D) 5.00×10^{-5}
(E) 9.817×10^{-8}
23. Lithium and nitrogen react to produce lithium nitride:

$$
6 \mathrm{Li}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}(\mathrm{~s})
$$

How many moles of Li are needed to react with 0.500 mol of N_{2} ?
(A) 3.00
(B) 0.500
(C) 0.167
(D) 1.50
(E) 0.0833
24. Which of the following are weak electrolytes?
$\mathrm{HCl}, \mathrm{BaCl}_{2}, \mathrm{NH}_{3}, \mathrm{KCl}$
(A) $\mathrm{HCl}, \mathrm{KCl}$
(B) $\mathrm{HCl}, \mathrm{BaCl}, \mathrm{NH}_{3}, \mathrm{KCl}$
(C) $\mathrm{BaCl}_{2}, \mathrm{KCl}$
(D) NH_{3}
(E) $\mathrm{HCl}, \mathrm{BaCl}_{2}, \mathrm{KCl}$
25. The balanced molecular equation for complete neutralization of $\mathrm{H}_{2} \mathrm{SO}_{4}$ by KOH in aqueous solution is \qquad .
(A) $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(B) $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{~K}^{+}(\mathrm{aq})$
(C) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
(D) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{~s})$
(E) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
26. When aqueous solutions of \qquad are mixed, a precipitate forms.
(A) KNO_{3} and BaCl_{2}
(B) AgNO_{3} and KBr
(C) $\mathrm{K}_{2} \mathrm{SO}_{4}$ and CrCl_{3}
(D) KOH and $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
(E) $\mathrm{Li}_{2} \mathrm{CO}_{3}$ and CsI
27. The molarity of a solution prepared by diluting 43.72 mL of 5.005 M aqueous NaOH to $500 . \mathrm{mL}$ is \qquad M.
(A) 57.2
(B) 0.0044
(C) 0.438
(D) 0.0879
(E) 0.870
28. The wavelength of light emitted from a traffic light having a frequency of $5.75 \times 10^{14} \mathrm{~Hz}$ is \qquad .
(A) 702 nm
(B) 641 nm
(C) 674 nm
(D) 521 nm
(E) 583 nm
29. The de Broglie wavelength of a 6.0 gram bullet traveling at $330 \mathrm{~m} / \mathrm{sec}$ is \qquad
(A) $2.7 \times 10^{-34} \mathrm{~m}$
(B) $3.3 \times 10^{-34} \mathrm{~m}$
(C) $3.35 \times 10^{-33} \mathrm{~m}$
(D) $2.7 \times 10^{-37} \mathrm{~m}$
(E) $6.6 \times 10^{-31} \mathrm{~m}$
30. All of the orbitals in a given electron shell have the same value of the \qquad quantum number.
(A) principal
(B) azimuthal
(C) magnetic
(D) spin
(E) psi
31. Which of the subshells below do not exist due to the constraints upon the azimuthal quantum number?
(A) 3 d
(B) 3 f
(C) $3 p$
(D) all of the above
(E) none of the above
32. An electron cannot have the quantum numbers $\mathrm{n}=$ \qquad $1=$ \qquad , $\mathrm{m} l=$ \qquad .
(A) $2,0,0$
(B) $2,1,-1$
(C) $3,1,-2$
(D) $3,2,-1$
(E) $3,2,2$
33. The \qquad orbital is degenerate with $4 p_{x}$ in a many-electron atom.
(A) 5 s
(B) $5 \mathrm{p}_{\mathrm{x}}$
(C) $4 p_{y}$
(D) $5 \mathrm{~d}_{\mathrm{xy}}$
(E) 4 s
34. Which of the following is not a valid set of four quantum numbers? $\left(\mathrm{n}, \mathrm{l}, \mathrm{m} l, \mathrm{~m}_{\mathrm{S}}\right)$
(A) $3,0,0,+1 / 2$
(B) $3,1,0,+1 / 2$
(C) $3,1,-1,-1 / 2$
(D) $3,2,1,+1 / 2$
(E) $3,3,2,+1 / 2$
35. Which one of the following is the correct electron configuration for a ground-state nitrogen atom?
(A)

(B)

(C)

(D)

(E) None of the above is correct.
36. The ground state electron configuration of Co is \qquad .
(A) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$
(B) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}$
(C) $1 s^{2} 2 s^{2} 3 s^{2} 3 p^{10}$
(D) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7} 4 s^{2}$
(E) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 4 d^{7}$
37. The ground state configuration of tungsten is \qquad .
(A) $[\mathrm{Xe}] 6 \mathrm{~s}^{2} 5 \mathrm{~d}^{4}$
(B) $[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 \mathrm{f}^{14} 5 \mathrm{~d}^{4}$
(C) $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{5}$
(D) $[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 \mathrm{f}^{7}$
(E) $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{5}$
38. The element that has a valence configuration of $4 s^{1}$ is \qquad .
(A) Cl
(B) Na
(C) K
(D) Rb
(E) Sr
39. In which set of elements would all members be expected to have very similar chemical properties?
(A) $\mathrm{O}, \mathrm{P}, \mathrm{Se}$
(B) $\mathrm{N}, \mathrm{O}, \mathrm{F}$
(C) $\mathrm{Na}, \mathrm{K}, \mathrm{Rb}$
(D) $\mathrm{S}, \mathrm{Se}, \mathrm{Si}$
(E) $\mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}$
40. Atomic radius generally increases as we move \qquad .
(A) down a group and from right to left across a period
(B) up a group and from left to right across a period
(C) down a group and from left to right across a period
(D) up a group and from right to left across a period
(E) down a group; the period position has no effect
41. Which isoelectronic series is correctly arranged in order of increasing radius?
(A) $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Ar}<\mathrm{Cl}^{-}$
(B) $\mathrm{Cl}^{-}<\mathrm{Ar}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
(C) $\mathrm{Ca}^{2+}<\mathrm{Ar}<\mathrm{K}^{+}<\mathrm{Cl}^{-}$
(D) $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Ar}<\mathrm{Cl}^{-}$
(E) $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{Ar}$
42. Of the choices below, which gives the order for first ionization energies?
(A) $\mathrm{Cl}>\mathrm{S}>\mathrm{Al}>\mathrm{Ar}>\mathrm{Si}$
(B) $\mathrm{S}>\mathrm{Si}>\mathrm{Cl}>\mathrm{Al}>\mathrm{Ar}$
(C) $\mathrm{Ar}>\mathrm{Cl}>\mathrm{S}>\mathrm{Si}>\mathrm{Al}$
(D) $\mathrm{Cl}>\mathrm{S}>\mathrm{Al}>\mathrm{Si}>\mathrm{Ar}$
(E) $\mathrm{Al}>\mathrm{Si}>\mathrm{S}>\mathrm{Cl}>\mathrm{Ar}$
43. Which ion below has the largest radius?
(A) Cl^{-}
(B) K^{+}
(C) Br^{-}
(D) Ca^{2+}
(E) Na^{+}
44. Which one of the following compounds would produce an acidic solution when dissolved in water?
(A) $\mathrm{Na}_{2} \mathrm{O}$
(B) CaO
(C) MgO
(D) SO_{3}
(E) SrO
45. Based on the octet rule, magnesium most likely forms a \qquad ion.
(A) Mg^{2+}
(B) Mg^{2-}
(C) Mg^{6-}
(D) Mg^{6+}
(E) Mg^{-}
46. Which of the following would have to lose two electrons in order to achieve a noble gas electron configuration?
$\mathrm{S} \quad \mathrm{Ca} \quad \mathrm{Na} \quad \mathrm{Se} \quad \mathrm{Br}$
(A) S, Se
(B) Ca
(C) Na
(D) Br
(E) $\mathrm{Ca}, \mathrm{S}, \mathrm{Se}$
47. What is the electron configuration for the Ti^{2+} ion?
(A) $[\mathrm{Ar}] 3 \mathrm{~d}^{4}$
(B) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{2}$
(C) $[\mathrm{Ar}] 3 \mathrm{~d}^{2}$
(D) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{8}$
(E) $[\mathrm{Ar}] 4 \mathrm{~s}^{2}$
48. The Lewis structure of PH_{3} shows \qquad nonbonding electron pair(s) on P .
(A) 0
(B) 1
(C) 2
(D) 3 (E) This cannot be determined from the data given.
49. For a molecule with the formula AB_{2} the molecular shape is \qquad .
(A) linear or bent
(B) linear or trigonal planar
(C) linear or T-shaped
(D) T-shaped
(E) trigonal planar
50. Of the molecules below, only \qquad is nonpolar.
(A) CO_{2}
(B) $\mathrm{H}_{2} \mathrm{O}$
(C) NH_{3}
(D) HCl
(E) TeCl_{2}

Please insert your answer sheet inside the answer book used for section B.

SECTION B (50 Marks)

There are three questions in this section. Each question is worth 25 marks. Answer any two questions. In all calculations answers must have the correct number of significant figures and correct units.

Question 1 (25 marks)

(a) Name the following compounds
(i) $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{Ca}_{3}(\mathrm{PO} 4)_{2}$
(iii) $\mathrm{N}_{2} \mathrm{O}_{4}$
(iv) $\mathrm{Cl}_{2} \mathrm{O}_{7}$
(b) Give the chemical formulas of the following species:
(i)sodium carbonate monohydrate
(ii) Bromic acid
(c) The mass composition of cryolite, a compound used in electrolytic production is aluminum is: $32.79 \% \mathrm{Na}, 13.02 \% \mathrm{Al}$ and $54.19 \% \mathrm{~F}$. Determine its empirical formula.
(d) Calculate
(i) the mass (in grams) of one $\mathrm{H}_{2} \mathrm{O}$ molecule.
(ii) determine the number of $\mathrm{H}_{2} \mathrm{O}$ molecules in 1.00 g of water.
(e) Determine the molar mass of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

Question 2 (25 marks)

(a) When the solution in Beaker 1 (below) is mixed with the solution in Beaker 2, a precipitate forms. Write two equations describing the formation of the precipitate in terms of the overall and the net ionic reaction and identify the spectator ions.
(i) \quad Beaker 1: $\mathrm{FeCl}_{3}(\mathrm{aq})$
Beaker 2: $\mathrm{NaOH}(\mathrm{aq})$
(ii) Beaker 1: $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \quad$ Beaker 2: $\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
(b) Select an acid and a base that for a neutralization reaction that results in the formation of (i) $\mathrm{K}_{3} \mathrm{PO}_{4}$ and (ii) CaBr_{2}. Write the overall equation for each reaction.
(c) Identify the oxidizing agent and reducing agent in each of the following reactions:
(i) $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
(ii) $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(iii) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
(d) Phosphorus trichloride, PCl_{3}, reacts with water to form phosphorous acid, $\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{aq})$ and hydrochloric acid.:
$\mathrm{PCl}_{3}(\mathrm{l})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{aq})+3 \mathrm{HCl}(\mathrm{aq})$
(i) Which is the limiting reactant when 12.4 g of PCl_{3} is mixed with 10.0 g of $\mathrm{H}_{2} \mathrm{O}$?
(ii) What masses of phosphorous acid and hydrochloric acid are produced?

Question 3 (25 marks)

(a) The frequency of a particular FM radio station is 95.5 MHz . Calculate the energy produced in transmission of 1.00 mol of photons at this frequency.
(b) Calculate the wavelength of a neutron with velocity $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
(c) Explain why the lattice enthalpy of magnesium oxide ($3850 \mathrm{~kJ} / \mathrm{mol}$) is greater than that of barium oxide ($3114 \mathrm{~kJ} / \mathrm{mol}$).
(d) Write the Lewis structure of the following species and state the number of lone pairs on the central atom
(i) ONO^{+}
(ii) XeO_{4}
(e) Write the Lewis structures and predict the shapes of
(i) OCCl_{2}
(ii) $\mathrm{ClO}_{3}{ }^{-}$
(f) Write the Lewis structure of each reactant, identify the Lewis acid and the Lewis base and then write the Lewis formula of the product (complex):
(i) $\mathrm{I}_{2}+\mathrm{I}^{-} \rightarrow$
(ii) $\mathrm{SnCl}_{4}+2 \mathrm{Cl}^{-} \rightarrow$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\lambda} \mathrm{k}$	$8.314 \mathrm{S1} \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $6.2364 \times 10 \mathrm{~L}^{\mathrm{T}} \mathrm{Torr}^{-1} \mathrm{~mol}^{-1}$
Planck constant	h	$6.62608 \times 10^{.34} \mathrm{~J} \mathrm{~s}$
	$h=\mathrm{h} / 2 \pi$	$1.05457 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	N_{A}	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	$\mathrm{me}_{\text {e }}$	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{f}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / \mathrm{c}^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{\text {。 }}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{~J} \mathrm{~s}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
		$4 \pi \times 10^{-7} \cdot \mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} \dagger / 2 \mathrm{~m}_{\mathrm{c}}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{\mathrm{N}}=\mathrm{e} \hbar / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	ge	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} h / \mathrm{m}_{\mathrm{e}} \mathrm{e}^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} c / 2 h$	7.29735×10^{-3}
Rydberg constant	$\mathrm{R}_{m}=\mathrm{m}_{e} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \mathrm{c}_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~ms} \mathrm{~s}^{2}$
Gravitational constant	G	$6.67259 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$1 \mathrm{cal}=$	4.184 joules (1)	1 erg
$1 \mathrm{eV}=$	$=1.6022 \times 10^{-19} \mathrm{~J}$	$1 \mathrm{eV} /$ molecule

 $\begin{array}{llllllllll}\text { fermto } & \text { pico } & \text { nano } & \text { micro milli } & \text { centi } & \text { deci } & \text { kilo } & \text { mega } & \text { giga } \\ 10^{-15} & 10^{-12} & 10^{-9} & 10^{-6} & 10^{-3} & 10^{-2} & 10^{-1} & 10^{3} & 10^{6} & 10^{9}\end{array}$

*Lanthanide Scrics
**'Actinide Scries

140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

() indicates the mass number of the isotope with the longest half-life.

