UNIVERSITY OF SWAZILAND
 SUPPLEMENTARY EXAMINATION

ACADEMIC YEAR 2012/2013

TITLE OF PAPER:	INTRODUCTORY INORGANIC CHEMISTRY
COURSE NUMBER:	C201
TIME ALLOWED:	THREE (3) HOURS
INSTRUCTIONS:	

1. There are six (6) questions. Answer any four (4) questions. Each question is worth 25 marks.
2. Begin the solution to each question on a new page

A periodic table, a table of constants and a copy of Slater's Rules have been provided with this examination paper.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

Question One

a) Define, or state, or illustrate using a suitable diagram, each of the following:
i) The Bohr radius
ii) The de Broglie wavelength
iii) The most probable radius of a 1 s orbital in a hydrogen atom
b) Define each of the following:
i) An orbital
[2]
ii) The effective nuclear charge
iii) Bond order.
[2]
c) Give all the quantum numbers and their possible values for an electron in a 6 orbital.
d) Sketch the energy-level diagram of the molecule that forms when a hydrogen atom and a helium atom combine. Label the atomic and molecular orbitals, give the electron configuration and calculate the bond order of the molecule.
[6]
e) The beryllium compound BeH_{2} exists as a polymer. Draw the structure of BeH_{2}. What is special about this structure?
[4]

Question Two

a) If a wave function of a hydrogen atom is given by

$$
\psi=\left(27-18 b+2 b^{2}\right) \exp (-b / 3)
$$

where $b=Z r / a_{0}$, give the expression for each of the following:
i) radial part
ii) angular part
iii) radial distribution function.
[5]
b) For the wavefunction of a $6 \mathrm{dx}^{2}-\mathrm{y}^{2}$ orbital, sketch the diagram corresponding to
i) radial part
ii) radial distribution function
iii) angular part
c) For each of the following species, write the electron configuration and determine the number of unpaired electrons present:
i) Cr
ii) P^{3-}
iii) Co^{2+}
iv) Mo^{2+}

Question Three

a) Consider the species $\mathrm{Ga}, \mathrm{Ga}^{+}$and Ga^{2+}.
i) For each of the species above, calculate the effective nuclear charge for an electron in the valence shell
ii) Based on your calculated effective nuclear charges, which of the species is expected to have the lowest ionization energy? Explain.
[3]
b) Consider the molecule $\mathrm{IO}_{2} \mathrm{~F}_{3}$, where iodine, I , is the central atom.
i) Draw at least three non-equivalent Lewis structures of the molecule
ii) Use formal charges to determine which one of the structures you have drawn is the most reasonable.
iii) For the most reasonable structure, calculate the average I-O bond order.
[10]

Question Four

a) For each of the following species, determine the molecular geometry and suggest an appropriate hybridization scheme for the central atom:
i) $\mathrm{F}_{2} \mathrm{O}$ (O is the central atom)
ii) SF_{4} (S is the central atom)
iii) BrF_{5} (Br is the central atom)
b) Consider a diatomic molecule NO. Using valence atomic orbitals and valence electrons only, answer the following questions:
i) Prepare a molecular orbital energy level diagram for the molecule, NO. [Note that the diagram should not be filled with any electrons at this point].
ii) Use the diagram in i) above to give electron configurations for NO and NO^{+}.
iii) For each of the species (NO and NO^{+}), indicate whether the species is paramagnetic or diamagnetic. Briefly explain your answer.
iv) For each of the two species above, calculate the bond order, and indicate which one is expected to have a stronger bond and which one is expected to have a shorter bond
[13 marks]

Question Five

h) Complete the following equations:
i) $\mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$
ii) $\mathrm{Ca}+\mathrm{H}_{2}$

iii) $\mathrm{Cl}_{2}(\mathrm{aq})+\mathrm{Br}^{-} \longrightarrow$
[7]
c) For each of the following, sketch the structure and indicate the coordination number around the Lewis acid:
i) $\quad\left[\mathrm{BF}_{4}\right]^{-}$
ii) $\mathrm{Be}^{2+}(\mathrm{aq})$
iii) $\quad \mathrm{SiF}_{6}{ }^{2-}$
iv) $\quad \mathrm{Na}^{+}(\mathrm{aq})$
[12]
b) Give an outline of the Born-Haber cycle for the formation of indium chloride, $\mathrm{InCl}_{3}(\mathrm{~s})$.
[6]

Question Six

a) For each of the groups (of the periodic table) given below, state the common oxidation state(s) which occur in oxides, and give the formula, $\mathrm{M}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}$, of each of such oxides:
i) group 1
ii) group 2
iii) group 13
iv) group 14
v) group 15
[10]
b) Give a balanced equation for a reaction that is expected to take place when each of the following chlorides is added to water:
i) CaH_{2}
ii) $\quad \mathrm{PCl}_{5}$
c) Give one example of an oxide and write a balanced reaction equation to illustrate its property as indicated below.
i) An acidic oxide that is soluble in water and show how it reacts with water
ii) A basic oxide that is soluble in water and show how it reacts with water
i) An amphoteric oxide and show how it reacts with an acid and a base

PERIODIC TABLE OF THE ELEMENTS

GROUPS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
periods	A	11 A	\%18	ive	vB	vib	vив		viII		18	118	IIIA	iva	VA	VIA	VIIA	VIIIA
1	$\begin{gathered} 1.008 \\ H \\ \hline \end{gathered}$																	$\begin{aligned} & 4.003 \\ & \mathrm{He} \\ & 0.2 \mathrm{y} \end{aligned}$
2	$\begin{gathered} 6.941 \\ \mathbf{L i}_{3} \end{gathered}$	9.012 Be													$\left\|\begin{array}{c} 14.007 \\ N \end{array}\right\|$	$\stackrel{1}{15.999}_{0}^{8}$	$\left.\begin{array}{\|c\|} \hline 18.998 \\ 5 \\ \hline 9 \end{array} \right\rvert\,$	${\underset{\sim}{20}}_{\substack{20.180 \\ \mathrm{Ne}}}$
3	$\stackrel{22.90}{\mathrm{Na}_{11}}$	$\begin{aligned} & { }_{2}^{24.305} \\ & \mathbf{M g}_{12} \end{aligned}$				NSI	ION	LEM	NTS				$\begin{gathered} \left.\begin{array}{c} 26.982 \\ \text { Al } \\ \text { Al } \end{array}\right] \end{gathered}$		$\begin{aligned} & 30.9738 \\ & \mathbf{P} \end{aligned}$	${ }^{32.06}$	${ }^{35.453}$	$\begin{gathered} \begin{array}{c} 3.948 \\ \mathbf{A r}_{4} 6 \end{array} \end{gathered}$
4	$\begin{gathered} 39.093 \\ \mathbf{K} \\ 19 . \end{gathered}$	$\begin{aligned} & 4.0 .78 \\ & \mathbf{C a z} \\ & \hline 200 \end{aligned}$		$\frac{{ }^{4788}}{T-82}$		$\left[\begin{array}{c} 51.996 \\ \mathbf{C r} \\ \hline 24 \% \end{array}\right.$	$\begin{aligned} & 54.938 \\ & M n \\ & . n_{5}^{2} \end{aligned}$		$\begin{gathered} 58.933 \\ \mathrm{C}_{0} \mathrm{E} 7 \end{gathered}$			$\begin{gathered} 6.39 \\ 70.30 \\ 7 \end{gathered}$	$\begin{gathered} 69.723 \\ \mathbf{G a} \end{gathered}$	$\mathrm{Ba}_{\mathrm{in}}^{72.61}$	$\begin{gathered} 74.922 \\ \mathbf{A}_{33} \end{gathered}$	$\begin{gathered} 78.96 \\ \mathrm{Se} \end{gathered}$ Ne	$\begin{gathered} 7.904 \\ \mathbf{B r} \\ \hline \mathbf{3} 5 \end{gathered}$	$\begin{gathered} \frac{83.30}{{ }^{83}} \\ \mathbf{K r} \\ \hline \mathbf{3 6} \end{gathered}$
5	$\begin{aligned} & \begin{array}{l} 8.468 \\ \text { Rb } \\ 37 \end{array} \end{aligned}$	$\begin{gathered} \begin{array}{c} 87.62 \\ \mathrm{Sr} \\ \mathrm{Sr} \\ \hline \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & 88.906 \\ & \mathbf{Y} \\ & \hline 39 \end{aligned}$	$\begin{gathered} 9122 \\ \frac{92}{740} \\ \hline \end{gathered}$		$\begin{aligned} & \mathbf{9 5 . 9 4} \\ & \mathbf{M o} \\ & \mathbf{M o}_{42} \end{aligned}$	$\begin{aligned} & 98.97 \\ & \mathbf{T C} \\ & .43 \end{aligned}$	$\begin{aligned} & 101.07 \\ & \mathbf{R u} \end{aligned}$	120.906 $R 4$ 45					$\begin{gathered} 11.71 \\ \mathrm{Sn} \\ \hline \end{gathered}$	$\begin{gathered} 121.75 \\ S \\ S \\ 5 \end{gathered}$		126.904 $\substack{1 \\ 3 \\ 53 \\ \hline}$	
6	$\begin{array}{\|c} 132.905 \\ \mathbf{C S} \\ 55 \end{array}$	$\begin{array}{\|c} \begin{array}{l} 137.33 \\ \mathbf{B a} \\ 56 \end{array} \end{array}$	$\begin{aligned} & \begin{array}{l} 139.906 \\ { }^{2} \mathrm{La} \\ 5 \mathrm{~F} \end{array} \end{aligned}$	$\begin{aligned} & 178.49 \\ & H f \end{aligned}$	$\begin{array}{\|c} 180.948 \\ \text { Ta } \\ \hline \end{array}$	${ }_{\substack{183.85 \\ \hline 74}}$	$\begin{gathered} 166.207 \\ \mathrm{Re}^{75} \end{gathered}$	$\begin{gathered} \begin{array}{c} 190.2 \\ \mathrm{OS}^{3} \end{array} \\ \hline 66 \mathrm{~F} \end{gathered}$		$\mathbf{P t}^{195.08}$		$\begin{aligned} & 200.59 \\ & H \mathbf{y y} \end{aligned}$	$\begin{gathered} 204.383 \\ T 1 \\ \hline 8 \end{gathered}$	$\begin{gathered} { }_{2}^{2072} \\ \mathbf{P b}^{3} \\ \hline 02 \end{gathered}$	$\left.\begin{array}{\|} 200.980 \\ \mathbf{B i} \\ \mathbf{8 3} \end{array} \right\rvert\,$		$\underset{\substack{(210) \\ \text { At } \\ \hline \text { A5 } \\ \hline}}{ }$	
7	$\begin{aligned} & \hline \frac{123)}{} \\ & \mathrm{Fr} \\ & \hline 87 \end{aligned}$	$\begin{aligned} & 226.025 \\ & \text { Ra } \\ & =08 \end{aligned}$	$\begin{gathered} (127) \\ { }^{(27 \mathrm{Ac}} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} (261) \\ \text { Rf } \\ 1046 \end{gathered}$	$\begin{gathered} \text { (282)} \\ \mathbf{H a} \\ \hline \mathbf{0 2 5} \end{gathered}$	$\begin{gathered} \text { Ungh } \\ \text { Unh } \\ \hline 106 \end{gathered}$	$\begin{aligned} & \text { Un2 } \\ & \text { UnS } \\ & \hline 107 \end{aligned}$	$\begin{aligned} & \text { (225) } \\ & \text { Uno } \\ & \text { 306 } \end{aligned}$	$\begin{aligned} & \text { Un6) } \\ & \text { Une } \\ & \hline 1096 \end{aligned}$									

* Lanthanide series
** Actindde serles

$\begin{gathered} 140.115 \\ \mathrm{Ce} \end{gathered}$	$\begin{gathered} 140.908 \\ \mathbf{P r} \end{gathered}$	$\begin{aligned} & 144.24 \\ & \mathrm{~N} d \end{aligned}$	$\begin{aligned} & (145) \\ & \mathbf{P}^{(1)} \end{aligned}$	$\stackrel{1}{150.36} \mathrm{Sm}$	$\begin{gathered} 151.96 \\ \mathbf{E} \end{gathered}$	$\begin{aligned} & 157.25 \\ & \text { Gd } \end{aligned}$	$\begin{gathered} 158.925 \\ \mathbf{T b} \end{gathered}$	162.50 Dy	164.930 110	${ }^{167.26}$	168.934 Tm	$\begin{aligned} & 3.04 \\ & b \end{aligned}$	${\underset{\text { LII }}{174.967}}^{2}$
232.038	231.03	238.029	237.04	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	N	11	Am	Cm	BK	C	Es	Fm	Md	(29)	Lr
90\%	\% 9	92	K93	494	+95	C\%	397\%	4x98 ${ }^{2}$	29094	400°	8014	102\%	103

Numbers below the symbol of the element indicales the alomic
numbers. Alomic masses, above the symbol of the element. are
based on the assigned relative alomic mass of ${ }^{12} \mathrm{C}=$ exacily 12 ;
() indicales the mass number of the isolope with the longest
hall-ife.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantiles, Units, and Symbols in Physical Chenistry, Blackwell Scientific Publications, Boston, 1988. pp 86-98.

UNIVERSITY OF SWAZILAND

CHEMISTRY DEPARTMENT

Compiled by Dr. ND Silavwe

Slater's Rules:

1) Write the electron configuration for the atom using the following design;
$(1 s)(2 s, 2 p)(3 s, 3 p)(3 d)(4 s, 4 p)(4 d)(4 f)(5 s, 5 p)$ etc
2) Any electrons to the right of the electron of interest contributes no shielding. (Approximately correct statement.)
3) All other electrons in the same group as the electron of interest shield to an extent of 0.35 nuclear charge units
4) If the electron of interest is an s or p electron: All electrons with one less value of the principal quantum number shield to an extent of 0.85 units of nuclear charge. All electrons with two less values of the principal quantum number shield to an extent of $\mathbf{1 . 0 0}$ units.
5) If the electron of interest is an d or f electron: All electrons to the left shield to an extent of 1.00 units of nuclear charge.
6) Sum the shielding amounts from steps 2 through 5 and subtract from the nuclear charge value to obtain the effective nuclear charge.

