UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION ACADEMIC YEAR 2012/2013

TITLE OF PAPER:

INTRODUCTORY INORGANIC CHEMISTRY

COURSE NUMBER:

THREE (3) HOURS

C201

INSTRUCTIONS:

TIME ALLOWED:

- There are six (6) questions. Answer any four
 (4) questions. Each question is worth 25 marks.
- 2. Begin the solution to each question on a new page

A periodic table, a table of constants and a copy of Slater's Rules have been provided with this examination paper.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

Question One

a) Define, or state, or illustrate using a suitable diagram, each of the following:									
	i)	The Bohr radius							
	ii)	The de Broglie wavelength							
/	iii)	The most probable radius of a 1s orbital in a hydrogen atom	[6]						
b)	Defin	Define each of the following:							
	i)	An orbital	[2]						
	ii)	The effective nuclear charge	[2]						
	iii)	Bond order.	[2]						
c)	Give all the quantum numbers and their possible values for an electron in a 6h orbital. [3]								
d)	Sketch the energy-level diagram of the molecule that forms when a hydrogen atom and								

d) Sketch the energy-level diagram of the molecule that forms when a hydrogen atom and a helium atom combine. Label the atomic and molecular orbitals, give the electron configuration and calculate the bond order of the molecule.

[6]

an 🗩

e) The beryllium compound BeH₂ exists as a polymer. Draw the structure of BeH₂. What is special about this structure? [4]

Question Two

a) If a wave function of a hydrogen atom is given by

 $\psi = (27-18b + 2b^2)exp(-b/3)$

where $b=Zr/a_o$, give the expression for each of the following:

- i) radial part
- ii) angular part
- iii) radial distribution function.

[5]

[6]

b) For the wavefunction of a $6dx^2-y^2$ orbital, sketch the diagram corresponding to

- i) radial part
- ii) radial distribution function
- iii) angular part
- c) For each of the following species, write the electron configuration and determine the number of unpaired electrons present:

ii) P³⁻ i) Cr iii) Co²⁺ iv) Mo2+

[14]

2 P

Question Three

- a) Consider the species Ga, Ga^+ and Ga^{2+} .
 - i) For each of the species above, calculate the effective nuclear charge for an electron in the valence shell [12]
 - ii) Based on your calculated effective nuclear charges, which of the species is expected to have the lowest ionization energy? Explain. [3]
- b) Consider the molecule IO_2F_3 , where iodine, I, is the central atom.
 - i) Draw at least three non-equivalent Lewis structures of the molecule
 - ii) Use formal charges to determine which one of the structures you have drawn is the most reasonable.
 - iii) For the most reasonable structure, calculate the average I-O bond order.

[10]

Question Four

- a) For each of the following species, determine the molecular geometry and suggest an appropriate hybridization scheme for the central atom:
 - i) F_2O (O is the central atom)
 - ii) SF_4 (S is the central atom)
 - iii) BrF₅ (Br is the central atom)

[12]

- b) Consider a diatomic molecule NO. Using <u>valence atomic orbitals and valence electrons only</u>, answer the following questions:
 - i) Prepare a molecular orbital energy level diagram for the molecule, **NO.** [Note that the diagram should not be filled with any electrons at this point].
 - ii) Use the diagram in i) above to give electron configurations for **NO** and **NO**⁺.
 - iii) For each of the species (NO and NO⁺), indicate whether the species is paramagnetic or diamagnetic. Briefly explain your answer.
 - iv) For each of the two species above, calculate the bond order, and indicate which one is expected to have a stronger bond and which one is expected to have a shorter bond [13 marks]

4

Question Five

.

h)	Compl	ete the follow	ing equ	ations:							
	i)	$CaC_2 + H_2O$									
	ii)	Ca +H₂					4°. 4°				
	iii)	Cl ₂ (aq) + Br									
							[7]				
c)	For eac Lewis a		ing, sket	ch the structur	e and ind	icate the coor	dination number around the				
	i)	[BF ₄] ⁻	ii)	Be²⁺(aq)	iii)	SiF ₆ ²⁻					
	iv)	Na⁺(aq)									
							[12]				
	b)	Give an outline of the Born-Haber cycle for the formation of indium chlori $InCl_3(s)$.									
			[6]								

.

5

•

Question Six

a) For each of the groups (of the periodic table) given below, state the common oxidation state(s) which occur in oxides, and give the formula, M_xO_y, of each of such oxides:

i) group 1 ii) group 2 iii) group 13 iv) group 14 v) group 15

[10]

- b) Give a balanced equation for a reaction that is expected to take place when each of the following chlorides is added to water:
 - i) CaH₂ ii) PCl₅

2

[4]

- c) Give one example of an oxide and write a balanced reaction equation to illustrate its property as indicated below.
 - i) An acidic oxide that is soluble in water and show how it reacts with water
 - ii) A basic oxide that is soluble in water and show how it reacts with water
 - i) An amphoteric oxide and show how it reacts with an acid and a base

[11]

. .

PERIODIC TABLE OF THE ELEMENTS

GROUPS																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14.	15	16	17	18
PERIODS	IA	IIA	1118	IVB	VB	VIB	VIIB		VIII		iВ	IIB	IIIA	IVA	VA .	VIA	VIIA	VIIIA
1	1.008 H	H											4.003 He 2					
2	6.941 Li	9.012 Be											10.811 B	12.011 C	14.007 N	15.999 O	18.998 F	20.180 Ne
3	22.990 Na	24.305 Mg		_	TF	RANSI	TION	ELEM	ENTS				26.982 Al	28.0855 Si	30.9738 P //15	32.06 S	35,453 Cl	39.948 Ar
4	39.0983 K 19	40.078 Ca 20	44.956 Sc	47.88 Ti	50:9415 V	51.996 Cr 24	54.938 Mn 25	55.847 Fe	58.933 Co 27	58.69 . Ni 28	63.546 Cu 29	65.39 Zn 130	69.723 Ga	72.61 Ge	74.922 AS	78.96 Se 34	79.904 Br	83.80 Kr 36
5	85.468 Rb	87.62 Sr 38	88.906 Y 39.55	91.224 Zr 40	92.9064 Nb	95.94 Mo 43.42	98.907 Tc	101.07 Ru	102.906 Rh	106.42 Pd 46	107.868 Ag	112.41 Cd	114.82 In 49	118.71 Sn 50	121.75 Sb 51	127.60 Te	126.904 I 53	131.29 Xe 54
6	132.905 CS	137.33 Ba	138.906 *La 	178.49 Hf	180.948 Ta	183.85 W	186.207 Re	190.2 OS	192.22 Ir	195.08 Pt	196.967 Au	200.59 Hg	204.383 TI 彩 81	207.2 Pb	208.980 Bi	(209) Po (5.84	(210) At	(222) Rn 86
7	(223) Fr 87,34	226.025 Ra 88 6	(227) **Ac 5 89	(261) Rf 104	(262) Ha	(263) Unh	(262) Uns	(265) Uno 108	(266) Une		-			~	×			
* Lanthanid	e series			140.115 Ce	140.908 Pr 59	144.24 Nd 60	(145) Pm 61	150.36 Sm 62	151.96 Eu	157.25 Gd 64	158.925 Tb	162.50 Dy 66	164.930 Ho	167.26 Er 68	168.934 Tm	173.04 Yb	174.967 Lu	
** Actinide series 232.036 231.036 238.029 237.048 (244) (243) (247) (251) (257) (258) (259) (260) ** Actinide series Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 90 91 92 93 94 95 96 99 99 100 101 102 103																		

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of $^{12}C = \text{exactly 12}$; () indicates the mass number of the isotope with the longest hall-life.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., *Quantities*, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.

UNIVERSITY OF SWAZILAND CHEMISTRY DEPARTMENT

Compiled by Dr. ND Silavwe

Slater's Rules:

1) Write the electron configuration for the atom using the following design;

(1s)(2s,2p)(3s,3p) (3d) (4s,4p) (4d) (4f) (5s,5p) etc

2) Any electrons to the right of the electron of interest contributes no shielding. (Approximately correct statement.)

3) All other electrons in the same group as the electron of interest shield to an extent of 0.35 nuclear charge units

4) If the electron of interest is an s or p electron: All electrons with one less value of the principal quantum number shield to an extent of 0.85 units of nuclear charge. All electrons with two less values of the principal quantum number shield to an extent of 1.00 units.

5) If the electron of interest is an d or f electron: All electrons to the left shield to an extent of 1.00 units of nuclear charge.

6) Sum the shielding amounts from steps 2 through 5 and subtract from the nuclear charge value to obtain the effective nuclear charge.

ی این است. ایک این د ماهمین برورید و در ۱۹۹۰ دهند

PHYSICAL AND CHEMICAL CONSTANTS

PHISICAL AND CHE		
Avogadro's number		$6.022045 \times 10^{23} \text{ mol}^{-1}$
Electron charge		4.8030×10^{-10} abs esu $1.6021892 \times 10^{-19}$ C
Electron mass	=	9.1091 × 10 ⁻³¹ kg 5.4860 × 10 ⁻⁴ amu 0.5110 MeV
Proton mass		1.6726485 × 10 ⁻²⁷ kg 1.007276470 amu
Gas constant	· =	8.31441 J mol ⁻¹ K ⁻¹ 1.9872 cal mol ⁻¹ K ⁻¹ 0.08206 L atm mol ⁻¹ K ⁻¹
Ice point	- =	273.15 K
Molar volume		22.414×10^{9} cm ³ mol ⁻¹ 2.2414×10^{-2} m ³ mol ⁻¹
Planck's constant	h = =	6.626176×10^{-34} J s 6.626176×10^{-27} erg s
Boltzmann's constant	k =	$1.380662 \times 10^{-23} \text{ J K}^{-1}$
Rydberg constant	R =	$1.097373177 \times 10^{-7} m^{-1}$
Faraday's constant	5 =	$9.648670 \times 10^4 \text{ C mol}^{-1}$
Speed of light	<i>c</i> =	$2.99792458 \times 10^8 \text{ m s}^{-1}$
Bohr radius	$a_0 =$	$0.52917706 \times 10^{-10} m$
Other numbers	π =	3.14159
		2.7183
	ln 10 =	2.3026
CONVERSION FACTO		4.194 invloc (I)
l eV/molecule		4.184 joules (J)
1 ev/molecule		96.485 kJ mol ⁻¹ 23.061 kcal mol ⁻¹
l kcal mol ⁻¹		349.76 cm ⁻¹
· · · · · · · · · · · · · · · · · · ·		0.0433 eV
1 kJ mol ⁻¹		83.54 cm ⁻¹
l wave number (cm ⁻¹).		$2.8591 \times 10^{-3} \text{ kcal mol}^{-1}$
l erg	. <u>-</u>	2.390×10^{-11} kcal
l centimeter (cm)		10 ⁸ Å 10 ⁷ nm
l picometer (pm)		10 ⁻² Å
l nanometer (nm)		10 Å ·
-		<u>,</u>