UNIVERSITY OF SWAZILAND

FINAL EXAMINATION May 2013

TITLE OF PAPER:

COURSE NUMBER:

TIME ALLOWED:

INSTRUCTIONS:

INORGANIC CHEMISTRY

THREE (3) HOURS

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

Question One

a) Name the following complexes:
(i) $\mathrm{Na}\left[\mathrm{HFe}(\mathrm{CO})_{4}\right]$
(ii) $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(iii) $\left[\mathrm{TaF}_{8}\right]^{3-}$
b) Write formula for the following complexes:
(i) Dinitratotetraaminecobalt(III) sulphate
(ii) Trihydridotris(triphenylphosphine)ruthenium(III)
(iii) μ-hydroxobis[pentaamminechromium(III)] chloride
c) i) Ignoring conformations of chelate rings, sketch possible geometric isomers that may result from the complex $\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CHMeNH}_{2}\right)_{2}\right] \mathrm{Cl}_{2}$, where chelate rings form a square planar environment.
ii) Indicate whether any of the isomers (I and II) given below would exhibit optical activity. Give a brief explanation of how you arrive at your conclusion.

[Note: In each structure, both chelate rings lie in the same plane; on the other hand, methyl (Me) groups lie either below or above the plane containing the chelate rings, giving rise to cis- and trans- isomers as shown].

Question Two

a) Classify each of the following species as hard, soft, or borderline Lewis acids or bases. Which of the Lewis bases would prefer to form adducts with each of the acids? $\mathrm{Fe}^{3+}, \mathrm{I}^{-}, \mathrm{CH}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{Cu}^{+}, \mathrm{Cl}^{-}$
b) Predict whether the equilibrium constant for each of the following reactions is expected to favour the forward reaction or the reverse reaction. Explain.
i) $\mathrm{Cdl}_{2}(\mathrm{~s})+\mathrm{CaF}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{CdF}_{2}(\mathrm{~s})+\mathrm{Cal}_{2}(\mathrm{~s})$
ii) $\mathrm{CaI}_{2}(\mathrm{aq})+\mathrm{Cu}_{2} \mathrm{O}$ (s) $\rightleftharpoons \mathrm{CaO}$ (s) $+2 \mathrm{Cul}(\mathrm{s})$
iii) $\mathrm{HgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})=\mathrm{HgS}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq})$
c) Give two examples of each of the following:
i) Monodentate ligands with oxygen as the donor atom
ii) Monodentate ligands with ritrogen as the donor atom
iii) Chelating ligands
iv) Macrocyclic ligands containing at least four N donor atoms
v) Crown ether ligands
d) Consider a ligand L whose structure is showr below.

What is the structure of the complex $[\mathrm{CuCl}(\mathrm{L})]^{+}$? Draw the structure of the complex.

Question Three

a) Consider the type of isomerism possible in the following compounds. Draw the different isomers for each compound to illustrate the type of isomerism exhibited by each of these complexes.
i) $\left[\mathrm{COl}_{3}(\mathrm{SCN})\right]^{2-}$, tetrahedral
ii) $\left[\mathrm{Cr}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}\left\{\mathrm{en}=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right\}$
[12]
b) Calculate the CFSE for each of the two complexes, $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$. Justify your assumptions of high-spin or low-spin in each case.
c) Classify each of the following ligands as pi-acceptor or pi-donor ligands. For each case use suitable orbital diagrams to illustrate how bonding between the liand take place.
i) $\mathrm{R}_{2} \mathrm{~N}^{-}, \mathrm{R}=\mathrm{H}$ or alkyl
ii) $\mathrm{R}_{3} \mathrm{P}$
[6]

Question Four

a) Copper(II) complexes are typically blue with one visible absorption band in their electronic spectra whereas copper(l) complexes are generally colourless. Explain. Assign spectroscopic labels to the states involved in the transition for an octahedral Cu^{2+} complex. Your answer should include electronic configurations of $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{II})$ ions.
b) Aqueous solutions of $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ show absorptions at 17200 and $25600 \mathrm{~cm}^{-1}$ assigned to the ${ }^{3} \mathrm{~T}_{2 \mathrm{~g}} \longleftarrow{ }^{3} \mathrm{~T}_{1 g}(\mathrm{~F})$ and ${ }^{3} \mathrm{~T}_{19}(\mathrm{P}) \longleftarrow{ }^{3} \mathrm{~T}_{19}(\mathrm{~F})$ transitions respectively. Estimate values of B and Dq for the complex.
[10]
c) Complexes $\left[\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ are paramagnetic and diamagnetic, respectively. What does this tell you about their structures? Explain how you arrive at your answer.

Question Five

a) Use the accompanying flow-chart diagram (decision tree), to determine the correct point group symbol for each of the systems below.
i)

ii)

iii)

[3]
b) The structure of tetrafluorooxorhenium(VI), ReOF_{4} ($\mathrm{C}_{4 \mathrm{~V}}$ symmetry), can be diagrammed as below. Use the accompanying $\mathrm{C}_{4 \mathrm{v}}$ character table to carry out the following tasks. Let the basis set for internal bond displacement coordinates be $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$ with r_{1} being assigned to the $\mathrm{Re}=\mathrm{O}$ bond; and let $\mathrm{F}-\mathrm{Re}-\mathrm{F}$ bond angle displacement coordinates be θ_{1}, θ_{2}, θ_{3}, and θ_{4}. Use this information to answer questions that follow.

i) Using internal coordinates, determine the total reducible representation for Re-F stretching modes and decompose it into irreducible representations.
[Note: Use of Cartesian coordinates (x, y, z) is not necessary]
ii) Using internal coordinates, determine the total reducible representation for in-plane bending modes (involving <FReF angles only) and decompose it into irreducible representations.
iii) Determine symmetries and the number of allowed IR-active and Raman-active bands for the molecule due to $\mathrm{Re}-\mathrm{F}$ stretching.
iv) Use the projection operator method to determine the SALCs for Re-F stretching vibrations and sketch them. For any doubly degenerate (E) representation present, generation of the first SALC for such a representation will suffice.

Question Six

a) Extraction of metals from minerals involves the use of a number of reductants (or oxidants) depending on the nature of the metal. Complete the following equations after identifying the reductant (R) or oxidant ($O x$):
i) $\quad \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{R}$ \qquad
ii) $\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{Ox} \longrightarrow$
iii) $\mathrm{WO}_{3}+\mathrm{R} \longrightarrow$
b) Consider the elements $\mathrm{Sc}, \mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}$ and Fe
i) Write the electron configuration for each of the elements
ii) Give the group oxidation number for each element
iii) Briefly, discuss the stability of group oxidation states for these elements.
[4]
iv) Titanium(IV) halides, $\mathrm{TiX}_{4}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ have all been prepared. On the other hand, for manganese (IV), only MnF_{4} has been prepared; preparation of the rest $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ has been unsuccessful. Explain.
c) If you were given a piece of gold and asked to dissolve it, state the type of reagent you would use. Give the reaction equation that accompanies the process.

END OF EXAMINATION

character table

C_{40}	E	$2 C_{4}$	C_{2}	$2 \sigma_{v}$	$2 \sigma_{d}$		
A_{1}	1	1	1	1	1	z	
A_{2}	1	1	1	-1	-1	R_{z}	$x^{2}+y^{2}, z^{2}$
B_{1}	1	-1	1	1	-1		$x^{2}-y^{2}$
B_{2}	1	-1	1	-1	1		$x y$
E	2	0	-2	0	0	$(x, y)\left(R_{x}, R_{y}\right)$	$(x z, y z)$

NOTE:

$$
* 2 C_{4} \Rightarrow C_{4}^{1} \text { and } C_{4}^{3}
$$

DECISION TREE

PERIODIC TABLE OF THE ELEMENTS
GROUPS

PERIODS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	IA	HA	IIB	ivb	va	Vi8	viib	vill			18	18	IIIA	IVA	va	VIA	vila	VIIIA
1	1.008 H 1																	
2	${ }_{6}^{6.941}$	${ }^{9.012}$ Be											[$\begin{gathered}10.811 \\ \boldsymbol{B}\end{gathered}$	$\stackrel{12.011}{\mathbf{C}}$	$\left.\right\|^{14.007}$	$\begin{gathered} 15.999 \\ 0 \end{gathered}$	$\stackrel{18.998}{\mathrm{~F}}$	$\stackrel{\substack{20.180 \\ \mathbf{N e}}}{ }$
													138	5180	, ${ }^{2} 8$		13940	N10
3	$\begin{aligned} & 22.90 \\ & \mathrm{Na} \\ & \mathrm{Na} \end{aligned}$	$\begin{aligned} & 24.305 \\ & \mathbf{M g}_{12} \end{aligned}$				ANSI	ION	LEM	NTS					${ }_{5}^{28.0855}{ }_{5}^{245}$				
4	$\begin{gathered} 39.0983 \\ \frac{K}{39} \end{gathered}$	$\begin{array}{\|l\|} \hline 40.078 \\ \mathbf{C a} \\ \hline 20 \end{array}$	$\begin{aligned} & 44.956 \\ & S_{21}^{41} \end{aligned}$	$\begin{gathered} 47.88 \\ T_{22} \end{gathered}$	$\int_{\text {asa }}^{50.915}$	$\stackrel{51.996}{\mathrm{C}^{5} \mathrm{r}}$		$\begin{aligned} & 55.847 \\ & \mathrm{Fe}^{2} \end{aligned}$	${ }^{58.933}$ 5, 272		$\begin{aligned} & 63.546 \\ & \mathrm{Cu} \\ & \hline 104 \end{aligned}$		$\begin{gathered} 6.923 \\ \mathbf{G a} \end{gathered}$	$\begin{gathered} 72.61 \\ \mathrm{Ge} \\ \hline \end{gathered}$				
5	$\begin{gathered} 85.468 \\ \mathbf{R b} \\ \mathbf{s i r} \end{gathered}$	$\stackrel{\stackrel{8}{87.62}}{\mathbf{S r}}$	$\begin{aligned} & 88.906 \\ & \mathbf{Y} \\ & \hline 39 \end{aligned}$	$\begin{array}{\|c} 91.224 \\ \mathbf{Z r} \\ 40 \end{array}$	92.9.964 $\mathbf{N b}$ 41	$\begin{aligned} & \text { mis. } \\ & \text { Mo } \\ & \text { Mo } \end{aligned}$			$\begin{gathered} { }^{102906} \\ \mathbf{R h} \end{gathered}$		$\left[\begin{array}{c} 1774858 \\ \mathbf{A g} \end{array}\right]$			$\begin{gathered} 118.71 \\ S n \\ \hline \end{gathered}$		$\stackrel{{ }^{127.60}}{\text { Tex }}$		
6	${ }^{132.905}$ $\stackrel{5}{55}$	$\begin{aligned} & 137.33 \\ & \mathbf{B a} \end{aligned}$		$\begin{aligned} & 178.49 \\ & \mathrm{Hf}_{7} \end{aligned}$	$\begin{gathered} 180.948 \\ \mathbf{T a} 7 \end{gathered}$	$\stackrel{183.85}{\mathbf{W}}$	$\begin{gathered} 166.207 \\ \mathbf{R e} \\ \hline \mathbf{R} \end{gathered}$	$\begin{aligned} & 190.2 \\ & \mathrm{Os} \end{aligned}$	$\frac{192.22}{\mathbf{1 r}}$	$\begin{aligned} & 195.08 \\ & \mathbf{P t} \end{aligned}$	$\begin{gathered} 196.967 \\ A u \\ \text { Au } \end{gathered}$	$\begin{aligned} & 200.59 \\ & \mathbf{H g} \end{aligned}$	$\begin{gathered} 204.383 \\ T 1 \\ \hline \end{gathered}$		$\begin{array}{\|c\|c\|} \hline 209.980 \\ \mathbf{B i} \\ \hline \end{array}$	$\begin{gathered} (209) \\ \mathbf{P} \\ \hline \end{gathered}$	$\begin{array}{r} (210) \\ \mathbf{A t}^{8} \mathrm{~B} \end{array}$	
7		226.025 Ra Ra		$\begin{aligned} & \begin{array}{l} \text { (261) } \\ \text { Rf } \\ 04 \end{array} \end{aligned}$	$\begin{gathered} \begin{array}{c} (222) \\ \mathbf{H a} \\ 105 \end{array} \end{gathered}$		$\begin{aligned} & \text { Une } \\ & \text { UnS } \\ & \text { Un } \end{aligned}$		(266) Une Une									

${ }^{140.115} \mathrm{Ce}$	${ }^{140.908} \mathbf{P r}^{2}$	$\mathrm{N}_{\mathrm{Nd}}^{14.24}$	$\begin{aligned} & (145) \\ & \mathbf{P m}_{2} \end{aligned}$		$\begin{aligned} & { }^{151.96} \\ & \mathbf{E} \mathbf{c} \end{aligned}$	$\begin{aligned} & 157.25 \\ & \text { Gd } \end{aligned}$	$\begin{gathered} 158.925 \\ T b \end{gathered}$	$\begin{aligned} & 162.50 \\ & \mathbf{D} y \end{aligned}$	$\begin{gathered} 164.930 \\ H 0 \end{gathered}$	${ }_{\text {Er }}^{167.26}$	$\stackrel{168.934}{T m}$	$\underbrace{173.04}_{\text {Yow }}$	$\begin{aligned} & 174.967 \\ & \mathbf{L U}^{2}=9{ }^{2} \end{aligned}$
58	5988	34560 ${ }^{\text {d }}$	265 ${ }^{\text {a }}$		\%663x	3464	践6540		816ind		710		
232.038	231.036	${ }^{238.029}$	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu .	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of ${ }^{12} \mathrm{C}=$ exacily 12 ; () indicates the mass number of the isolope with the longest half-life.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantites, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.

