UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2013

TITLE OF PAPER:	INORGANIC CHEMISTRY
COURSE NUMBER:	C301
TIME ALLOWED:	THREE (3) HOURS
INSTRUCTIONS:	THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

Question One

- a) Name the following complexes:
 - (i) [FeO₄]²⁻

ļ

- (ii) $K_4[V(CN)_7].2H_2O$
- (iii) NiBr₃(PPh₃)₂

[6]

- b) Write formula for the following complexes:
 - (i) Carbonatopentaamminecobalt(III) chloride
 - (ii) Di--µ-acetatobis[diammineplatinum(II) chloride
 - iii) Potassium tetrabromocuprate(II)

[9]

c) What is meant by tetragonal and trigonal distortion of an octahedron? Illustrate your answer with a drawing for each case.

[10]

Question Two

(a) Draw a structure for each of the following compounds or ions:

(i) mer- bis(acetonitrile)trichloridooxoniobium(V)

(ii) di-µ-hydroxobis[bis(ethylenediamine)chromium(III)]

[5]

- b) Determine the oxidation state and number of d electrons for the metal centre in each of the complexes:
 - (i) [Fe(CN)(CO)]
 - (ii) $[NiBr_3(PEt_3)_2]$

- c) Consider the compounds $[Pt(NH_3)_4]SO_4$ and $Ag_2[PtCl_4]$. Describe chemical methods by which they can be distinguished from each other.
 - [4]
- d) Consider a complex corresponding to the formula $[Cr(SCN)(H_2O)_5]Br.2H_2O$.
 - i) Sketch the structures of linkage isomers of the cation in the complex
 - ii) Give the formulas of ionization isomers of the compound
 - (v) Give the formula of hydrate isomers of the compound

[10]

Question Three

- a) Explain each of the following:
 - i) The manganous ion, $[Mn(H_2O)_6]^{2+}$, reacts with CN^- to form $[Mn(CN)_6]^{4-}$ which has a magnetic moment (µ) of 1.95 B.M., but reacts with l⁻ to give $[MnI_4]^{2-}$ which has $\mu = 5.93$ B.M.
 - ii) [PtBr₂Cl₂]²⁻ exists in two isomeric forms, whereas [NiBr₂Cl₂]²⁻ does not exhibit isomerism.

[11]

- c) Give examples of macrocyclic ligands containing as donor atoms
 - i) oxygen only
 - ii) nitrogen only
 - iii) both oxygen and nitrogen

[6]

d) Describe how pi-donor and pi-acceptor ligands can control the preferred oxidation states of transition metal ions. Give one example for each type of ligands.

[8]

Question Four

- a) Give the relevant selection rules for electronic transitions in spectra of transition metal complexes. What factors can lead to their violation?
 [8]
- b) List and identify by location all the symmetry elements present in the B₂H₆ molecule. Then determine the correct point group for the molecule. The structure of the molecule is sketched below.

[4]

- c) A four-coordinate Pd(II) complex, $[Pd(CO)_2Cl_2]$, is believed to be square planar in coordination geometry. *Trans*-square planar coordination would have D_{2h} symmetry, while *cis*-square planar coordination has C_{2v} symmetry.
 - i) Draw structures the two possible isomers
 - Work out the symmetry-allowed IR and Raman v(Pd-Cl) bands for the *trans* isomer <u>only</u>. [Let the z axis be perpendicular to the plane of the molecule and then let x and y axes coincide with CI-Pd-Cl and CO-Pd-CO axes respectively].

[13]

Question Five

Consider the square pyramidal complex, $[InCl_5]^{2-}$, whose structure is sketched below. Let s₁, s₂, s₃, s₄ and s₅ represent ligand s (sigma-type) orbitals.

a) Given that the point group of the complex is C_{4v}, generate a reducible representation of the ligand s orbitals and decompose it into irreducible representations.

[5]

b) Use the projection operator method to generate SALCs for the irreducible representations obtained in a) above for the ligand s orbitals.

[8]

c) From the results obtained in a) and b) above, create a table with column headings as shown below. For each irreducible representation, Γ_s, of the ligand s orbitals, list matching atomic orbital(s) on In. Also enter in the table corresponding SALCs.

Irreducible representation, Γ_{s} , from ligand s orbitals,	Valence atomic orbital(s) on central atom, In	SALCs of ligand s orbitals corresponding to Γ_s

d) Using the data in c) above, give four possible hybridization schemes for bonding between ligand s orbitals and valence orbitals on the In(III) center.

[6]

[8]

Question Six

a) Using hard-soft concepts, figure out in which direction, forward or reverse, the following reactions are expected to be more favourable:

i) $R_3PBBr_3 + R_3NBF_3 \longrightarrow R_3PBF_3 + R_3NBBr_3$ ii) $[Cul_4]^{2-} + [CuCl_4]^{3-} \longrightarrow [CuCl_4]^{2-} + [Cul_4]^{3-}$

b) Consider a the ligand H₂N-CH₂-P(CH₃)₂ which has two donor atoms, P and N.
 Decide which donor atom is more likely to bind to boron in a complex with the following Lewis bases. Explain your answer.

i) BH₃ ii) BF₃

- e) Considering the concept of hard acids and bases, state two essential characteristics of each of the following:
 - i) hard acids
 - ii) soft acids
- d) Give balanced reaction equations depicting the reaction of transition metals with non-metals as
 - i) $Cr(s) + O_2(g) \rightarrow$
 - ii) $W(s) + O_2(g) \rightarrow$
 - iii) $Mn(s) + Cl_2(g) \rightarrow$

iv)
$$Ti(s) + Cl_2(g) \rightarrow$$

v)
$$V(s) + Cl_2(g) \rightarrow$$

[9]

€. 85

[4]

PERIODIC TABLE OF THE ELEMENTS

GROUPS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIII		iB	IIB	. IIIA	IVA	VA .	VIA	VIIA	VIIIA
1	1.008 H		_															4.003 He 2
2	6.941 Li	9.012 Be											10.811 B	12.011 C	14.007 N	15.999 O	18.998 F	20.180 Ne
3	22.990 Na	24.305 Mg		-	TF	RANSI	TION	ELEM	ENTS			,	26.982 AI	28.0855 Si 14	30.9738 P	32.06 S	35.453 Cl	39.948 Ar 18
4	39.0983 K 19	40.078 Ca 20	44.956 Sc 21	47.88 Ti	50.9415 V 23	51.996 Cr 24	54.938 Mn 325	55.847 Fe	58.933 Co	58.69 Ni 28	63.546 Cu 7.29	65.39 Zn 30	69.723 Ga	72.61 Ge	74.922 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.468 Rb	87.62 Sr	88.906 Y 39.	91.224 Zr .40	92.9064 Nb	95.94 Mo 42	98.907 Tc 43	101.07 Ru	102.906 Rh	106.42 Pd 46	107.868 Ag	112.41 Cd	114.82 In 49	118.71 Sn 50	121.75 Sb	127.60 Te	126.904 I 53	131.29 Xe
6	132.905 CS	137.33 Ba	138.906 *La *57	178.49 Hf	180.948 Ta	183.85 W	186.207 Re	190.2 Os	192.22 Ir	195.08 Pt 78	196.967 Au	200.59 Hg	204.383 TI 81	207.2 Pb 82	208.980 Bi	(209) Po	(210) At	(222) Rn 86
7	(223) Fr 87	226.025 Ra	(227) **Ac	(261) Rf 104	(262) Ha 105	(263) Unh	(262) Uns	(265) Uno 108	(266) Une 109		-			~~~				
						·····			·	r		1						1
				140.115 Ce	140.908 Pr	144.24 Nd	(145) Pm	150.36 Sm	^{151.96} Eu	157.25 Gd	158.925 Tb	162.50 Dv	164.930 Ho	167.26 Er	168.934 Tm	173.04 Yb	174.967 L11	
* Lanthanide series									A									
** Actinide series 232.038 231.036 238.029 237.048 (244) (243) (247) (247) (251) (252) (257) (258) (259) (250) (25																		

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of $^{12}C = exactly 12$; () indicates the mass number of the isotope with the longest half-life.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., *Quantities*, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.

PHYSICAL AND CHEMICAL CONSTANTS

TITLALAN STATE ATTRACT			
Avogadro's number	N_{A}	=	$6.022045 \times 10^{23} \text{ mol}^{-1}$
Electron charge	е	=	4.8030×10^{-10} abs esu $1.6021892 \times 10^{-19}$ C
Electron mass	m,		9.1091×10^{-31} kg 5.4860×10^{-4} amu 0.5110 MeV
Proton mass	mp		$1.6726485 \times 10^{-27}$ kg 1.007276470 amu
Gas constant	R		8.31441 J mol ⁻¹ K ⁻¹ 1.9872 cal mol ⁻¹ K ⁻¹ 0.08206 L atm mol ⁻¹ K ⁻¹
Ice point		=	273.15 K
Molar volume		II	$\begin{array}{l} 22.414 \times 10^3 \ \mathrm{cm}^3 \ \mathrm{mol}^{-1} \\ 2.2414 \times 10^{-2} \ \mathrm{m}^3 \ \mathrm{mol}^{-1} \end{array}$
Planck's constant	h		6.626176×10^{-34} J s 6.626176×10^{-27} erg s
Boltzmann's constant	k	æ	$1.380662 \times 10^{-23} \text{ J K}^{-1}$
Rydberg constant	R	=	$1.097373177 \times 10^{-7} m^{-1}$
Faraday's constant	5	_	$9.648670 \times 10^4 \text{ C mol}^{-1}$
Speed of light	С	=	$2.99792458 \times 10^8 \text{ m s}^{-1}$
Bohr radius	a_0	æ	$0.52917706 \times 10^{-10}$ m
Other numbers	π	=	3.14159
,	e	=	2.7183
		=	2.3026
L cal	3	=	4 184 joules (I)
l eV/molecule		_	96 485 kL mol ⁻¹
		=	23.061 kcal mol ⁻¹
1 kcal mol ⁻¹		=	349.76 cm ⁻¹ 0.0433 eV
1 kJ mol ⁻¹		=	83.54 cm ⁻¹
l wave number (cm ⁻¹).		=	$2.8591 \times 10^{-3} \text{ kcal mol}^{-1}$
1 erg	-	==	2.390×10^{-11} kcal
l centimeter (cm)		=	10 ⁸ Å 10 ⁷ nm
l picometer (pm)		=	10 ⁻² Å
l nanometer (nm)		<u> </u>	10 Å ·

· · · · ·

CHARACTER TARLES

. - $D_{2h} \mid E \quad C_2(z) \quad C_2(y) \quad C_2(x) \quad i$ $\sigma(xy) \sigma(xz) \sigma(yz)$ $\begin{array}{c} A_g \\ B_{1g} \\ B_{2g} \\ B_{3g} \\ A_u \\ B_{1u} \\ B_{2u} \\ B_{3u} \end{array}$ 1 1 1 x^2, y^2, z^2 1 1 1 1 1 $\begin{array}{c|c} R_z & xy \\ R_y & xz \\ R_x & yz \end{array}$ 1 -1 -1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 1 -1 1 1 z 1 -1 -1 1 1 -1 1 y x 1 1 1 -1 - 1

(C _{2h}	E	<i>C</i> ₂	i	σ _h		· ·
A E S A E	$\begin{array}{c} A_{g} \\ B_{g} \\ A_{u} \\ B_{u} \end{array}$	1 1 1 1	1 -1 1 -1	1 -1 -1	1 -1 -1 1	$\begin{bmatrix} R_z \\ R_x, R_y \\ z \\ x, y \end{bmatrix}$	x ² , y ² , z ² , xy xz, yz

CAV	E	2 <i>C</i> ₄	<i>C</i> ₂	2σ _v	20 _d	-	
A ₁	1	1	1	1	1	Z	$x^2 + y^2, z^2$
A_2	1	1	1	-1	-1	R_z	
B_1	1	-1	1	1	-1		$x^2 - y^2$
B_2	1	1	1	-1	1		xy
Ē	2	0	-2	0	0	$(x, y)(R_x, R_y)$	(xz, yz)

and the second sec

.

8 - L

- .

1

. '

730

TANABE-SUGANO DIAGRAI

· .

2. d^3 with C = 4.5B

4. d^{5} with C = 4.477B

