UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2013

TITLE OF PAPER:

COURSE NUMBER:

TIME ALLOWED:

INSTRUCTIONS:

INORGANIC CHEMISTRY

THREE (3) HOURS

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

Question One

a) Name the following complexes:
(i) $\left[\mathrm{FeO}_{4}\right]^{2-}$
(ii) $\mathrm{K}_{4}\left[\mathrm{~V}(\mathrm{CN})_{7}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{NiBr}_{3}\left(\mathrm{PPh}_{3}\right)_{2}$
b) Write formula for the following complexes:
(i) Carbonatopentaamminecobalt(III) chloride
(ii) $\mathrm{Di}-\mu$-acetatobis[diammineplatinum(II) chloride
iii) Potassium tetrabromocuprate(II)
[9]
c) What is meant by tetragonal and trigonal distortion of an octahedron? Illustrate your answer with a drawing for each case.
[10]

Question Two

(a) Draw a structure for each of the following compounds or ions:
(i) mer-bis(acetonitrile)trichloridooxoniobium(V)
(ii) di- μ-hydroxobis[bis(ethylenediamine)chromium(III)]
b) Determine the oxidation state and number of d electrons for the metal centre in each of the complexes:
(i) $\left[\mathrm{Fe}(\mathrm{CN})(\mathrm{CO})_{4}\right]^{-}$
(ii) $\left[\mathrm{NiBr}_{3}\left(\mathrm{PEt}_{3}\right)_{2}\right]$
c) Consider the compounds $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$ and $\mathrm{Ag}_{2}\left[\mathrm{PtCl}_{4}\right]$. Describe chemical methods by which they carl be distinguished from each other.
d) Consider a complex corresponding to the formula $\left[\mathrm{Cr}(\mathrm{SCN})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Br} .2 \mathrm{H}_{2} \mathrm{O}$.
i) Sketch the structures of linkage isomers of the cation in the complex
ii) Give the formulas of ionization isomers of the compound
(v) Give the formula of hydrate isomers of the compound
[10]

Question Three

a) Explain each of the following:
i) The manganous ion, $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, reacts with CN^{-}to form $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4}$ which has a magnetic moment (μ) of 1.95 B.M., but reacts with Γ^{\prime} to give $\left[\mathrm{MnI}_{4}\right]^{2-}$ which has $\mu=5.93$ B.M.
ii) $\quad\left[\mathrm{PtBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$ exists in two isomeric forms, whereas $\left[\mathrm{NiBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$ does not exhibit isomerism.
c) Give examples of macrocyclic ligands containing as donor atoms
i) oxygen only
ii) nitrogen only
iii) both oxygen and nitrogen
d) Describe how pi-donor and pi-acceptor ligands can control the preferred oxidation states of transition metal ions. Give one example for each type of ligands.

Question Four

a) Give the relevant selection rules for electronic transitions in spectra of transition metal complexes. 'What factors can lead to their violation?
b) List and identify by location all the symmetry elements present in the $\mathrm{B}_{2} \mathrm{H}_{6}$ molecule. Then determine the correct point group for the molecule. The structure of the molecule is sketched below.

c) A four-coordinate $\mathrm{Pd}(\mathrm{II})$ complex, $\left[\mathrm{Pd}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$, is believed to be square planar in coordination geometry. Trans-square planar coordination would have $D_{2 h}$ symmetry, while cis-square planar coordination has $C_{2 v}$ symmetry.
i) Draw structures the two possible isomers
ii) Work out the symmetry-allowed IR and Raman v(Pd-CI) bands for the trans isomer only. [Let the z axis be perpendicular to the plane of the molecule and then let x and y axes coincide with $\mathrm{Cl}-\mathrm{Pd}-\mathrm{Cl}$ and CO-Pd-CO axes respectively].

Question Five

Consider the square pyramidal complex, $\left[\operatorname{lnCl} \mathrm{I}_{5}\right]^{2-}$, whose structure is sketched below. Let $\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}, \mathbf{s}_{4}$ and \mathbf{s}_{5} represent ligand s (sigma-type) orbitals.

a) Given that the point group of the complex is $\mathrm{C}_{4 \mathrm{v}}$, generate a reducible representation of the ligand s orbitals and decompose it into irreducible representations.
[5]
b) Use the projection operator method to generate SALCs for the irreducible representations obtained in a) above for the ligand s orbitals.

[8]

c) From the results obtained in a) and b) above, create a table with column headings as shown below. For each irreducible representation, Γ_{s}, of the ligand s orbitals, list matching atomic orbital(s) on In. Also enter in the table corresponding SALCs.
[6]

lrreducible representation, $\Gamma_{s,}$ from ligand s orbitals,	Valence atomic orbital(s) on central atom, In	SALCs of ligand s orbitals corresponding to Γ_{s}

d) Using the data in c) above, give four possible hybridization schemes for bonding between ligand sorbitals and valence orbitals on the In(III) center.

Question Six

a) Using hard-soft concepts, figure out in which direction, forward or reverse, the following reactions are expected to be more favourable:
i) $\quad \mathrm{R}_{3} \mathrm{PBBr}_{3}+\mathrm{R}_{3} \mathrm{NBF}_{3} \longrightarrow \quad \mathrm{R}_{3} \mathrm{PBF}_{3}+\mathrm{R}_{3} \mathrm{NBBr}_{3}$
ii) $\left[\mathrm{CuI}_{4}\right]^{2-}+\left[\mathrm{CuCl}_{4}\right]^{3-} \longrightarrow \quad\left[\mathrm{CuCl}_{4}\right]^{2-}+\left[\mathrm{CuI}_{4}\right]^{3-}$
b) Consider a the ligand $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2}$ which has two donor atoms, P and N . Decide which donor atom is more likely to bind to boron in a complex with the following Lewis bases. Explain your answer.
i) BH_{3}
ii) BF_{3}
e) Considering the concept of hard acids and bases, state two essential characteristics of each of the following:
i) hard acids
ii) soft acids
d) Give balanced reaction equations depicting the reaction of transition metals with non-metals as
i) $\mathrm{Cr}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$
ii) $\mathrm{W}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$
iii) $\mathrm{Mn}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow$
iv) $\mathrm{Ti}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow$
v) $\quad \mathrm{V}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow$

PERIODIC TABLE OF THE ELEMENTS

GROUPS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Periods	IA	UA	"113	ive	va	V19	vile		vill		18	118	III	IVA	va	VIA	VIIA	VIIIA
1	$\begin{gathered} 1.008 \\ \mathbf{H} \end{gathered}$																	4.003 He He
2	$\begin{aligned} & 6.941 \\ & \mathbf{L i} \end{aligned}$	$\begin{aligned} & 9.012 \\ & \mathbf{B e} \end{aligned}$												$\begin{gathered} { }^{12.011} \\ \text { C } \end{gathered}$	$\stackrel{1}{14.007}_{N}^{N}$	$\stackrel{15.999}{0}$	$\begin{gathered} 18.998 \\ \mathrm{~F}^{18} \end{gathered}$	20.180 Ne iof
3	$\begin{gathered} 22.990 \\ \mathbf{N a} \\ \mathbf{s i} \end{gathered}$	$\begin{aligned} & 24.305 \\ & \mathrm{Mg} \\ & \mathbf{2}_{12} \end{aligned}$				RANSI	ITION	LEM	ENTS				$\begin{gathered} 26.982 \\ \mathrm{Al} \\ \text { 813 } \end{gathered}$		$\begin{gathered} 30.9738 \\ \hline 15 \\ \hline \end{gathered}$	$\stackrel{\substack{32.06 \\ S \\ \text { Sin }}}{ }$	$\begin{aligned} & \text { 35.453 } \\ & \mathrm{Cl} \end{aligned}$	
4	$\begin{array}{\|c\|} \hline 39.983 \\ \mathbf{K} \end{array}$	$\begin{aligned} & 40.078 \\ & \mathrm{Ca} \\ & \hline 20 \end{aligned}$		$\left\lvert\, \begin{gathered} 47.88 \\ T i x 2 z \end{gathered}\right.$	$\frac{50: 9415}{V}$	$\begin{gathered} 51.96 \\ \mathrm{Cr}_{24} \end{gathered}$	$\begin{aligned} & \mathbf{5 4 . 9 3 8}^{\mathrm{Mn}_{25}} \\ & =2 \end{aligned}$	$\frac{55.847}{\mathrm{Fe}}$				$\begin{gathered} 6.39 \\ 7 \\ 7 \end{gathered}$	$\begin{gathered} 69.723 \\ \mathrm{Ga} \\ \hline \end{gathered}$		$\begin{gathered} 74.922 \\ A s \\ A_{35} \end{gathered}$	$\begin{gathered} \begin{array}{c} 78.96 \\ \text { Se } \\ \text { Se } \end{array} \end{gathered}$	$\begin{gathered} \begin{array}{c} 7.904 \\ \mathbf{B r} \\ \hline \end{array} \\ \hline 35 \end{gathered}$	
5	$\begin{aligned} & \left.\begin{array}{l} 85.488 \\ \mathbf{R b} \\ \mathbf{3 7} \end{array} \right\rvert\, \end{aligned}$	$\begin{gathered} \begin{array}{c} 87.62 \\ \mathrm{Sr} \\ \mathrm{Br} \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 88.906 \\ \mathbf{Y} \\ \hline \end{gathered}$			$\begin{gathered} 9599 \\ \mathbf{M o} \\ \begin{array}{c} 42 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 98.907 \\ \text { TC } \\ \text { 43 } \end{gathered}$	$\begin{aligned} & 10.07 \\ & \mathbf{R} \mathbf{R u} \\ & \hline 44, \end{aligned}$	$\begin{array}{\|c\|} \hline 102.906 \\ \mathbf{R H}^{2} 45 \end{array}$						$\underset{\substack{121.75 \\ \text { Sb } \\ \text { Sistax } \\ \hline \\ \hline}}{ }$	$\begin{aligned} & 127.60 \\ & \text { Te } \end{aligned}$	$\stackrel{1}{126.904} \underset{1}{1}$	$\begin{gathered} { }^{13129} \\ \mathbf{X e} \\ \stackrel{\rightharpoonup}{54} 5 \end{gathered}$
6	$\begin{gathered} 132.905 \\ \mathrm{C}_{5} \\ \hline 55 \end{gathered}$	$\begin{aligned} & 137.33 \\ & \mathbf{B a} \\ & \hline 56 \end{aligned}$	$\begin{array}{\|c} 136.906 \\ { }^{1} \mathbf{L}, \mathbf{a} \end{array}$	$\begin{aligned} & 178.49 \\ & \text { Hif } \\ & \text { Hit } \end{aligned}$	$\begin{gathered} 180.948 \\ \mathrm{Ta} \end{gathered}$	$\begin{array}{\|c} 183.85 \\ \mathbf{W} \end{array}$	$\begin{gathered} 186.207 \\ \mathrm{Re}^{2} \end{gathered}$	$\begin{aligned} & 190.2 \\ & \mathrm{Os} \end{aligned}$	$\frac{192.22}{1 r}$	$\stackrel{15.08}{\mathbf{P},}$	$\begin{gathered} 196.967 \\ A u \\ \hline 89 \end{gathered}$	$7{ }^{7}{ }^{200.59}{ }^{20.5}$	$\begin{gathered} 204.383 \\ \mathrm{Tl} \\ \hline 15 \end{gathered}$	$\begin{aligned} & 2072 \\ & \mathbf{P b} \end{aligned}$	$\begin{gathered} 208.980 \\ \mathbf{B i} \\ \mathbf{8} \end{gathered}$	$\begin{aligned} & (209) \\ & \mathbf{P o} \end{aligned}$	(210)	$\begin{aligned} & (222) \\ & \mathbf{R n} \end{aligned}$
7	$\begin{array}{\|c\|} \hline(223) \\ \mathrm{Fr} \\ \hline 87 \\ \hline \end{array}$	$\begin{gathered} 226.025 \\ \mathbf{R a}_{88} \end{gathered}$			2622 Ha 165 a	$\begin{gathered} \text { Unh } \\ \text { Unh } \\ \hline 106 \end{gathered}$	$\begin{aligned} & (262) \\ & \text { Uns } \\ & \hline 2 \pi y \end{aligned}$	$\begin{aligned} & (265) \\ & \mathrm{UnO}_{606} \end{aligned}$	$\begin{aligned} & \text { (226) } \\ & \text { Une } \end{aligned}$									

- Lanthanide series
* Actinlde serles

$\begin{gathered} 140.115 \\ \mathbf{C e} \end{gathered}$	${\stackrel{140.908}{\mathbf{P r}_{1}}}^{2}$	$\mathbf{N d}^{144.24}$	$\begin{aligned} & { }^{(145)} \\ & \mathbf{P m} \end{aligned}$	$\begin{aligned} & 150.36 \\ & \mathbf{S} 11 \end{aligned}$	$\begin{aligned} & 151.96 \\ & \text { Eu } \end{aligned}$	$\begin{array}{r} 157.25 \\ \mathbf{G d} \end{array}$	${ }_{7}^{158.925}$	${ }^{162.50}$	$\begin{gathered} 164.930 \\ H 0 \end{gathered}$	$\begin{gathered} 167.26 \\ \mathbf{E r} \end{gathered}$	168.934 Tm	$\mathbf{1 7 3 . 0 4}$	${ }^{174.967}$
358	8899\%	460,	66148	62	63	664,4	W6592	-266ma	867\%	668, ${ }^{\text {ch }}$	69.5	\%	\%
232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	BK	Cf	Es	Fm	Md	No	Lr
290\%	291-8	-923\%		294\%	505. ${ }^{\text {a }}$	296\%		S6889	\%9984	4000	T614.	57029	1103

Numbers below the symbol of the element indicates the alomic numbers. Atomic masses, above the symbol of the element, are
based on the assigned relative alomic mass of ${ }^{12} \mathrm{C}=$ exacily 12 ;
() indicates the mass number of the isolope with the longest
half-ilie.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.

CHARACTER TARLES

$D_{2 \hbar}$	E	$C_{2}(z)$	$C_{2}(y)$	$C_{2}(x)$	i	$\sigma(x y)$	$\sigma(x z)$	$\sigma(y z)$		
A_{g}	1	1	1	1	1	1	1	1		x^{2}, y^{2}, z^{2}
$B_{1 g}$	1	1	-1	-1	1	1	-1	-1	R_{z}	$x y$
$B_{2 g}$	1	-1	1	-1	1	-1	1	-1	R_{y}	$x z$
$B_{3 g}$	1	-1	-1	1	1	-1	-1	1	R_{x}	$y z$
A_{u}	1	1	1	1	-1	-1	-1	-1		
$B_{1 u}$	1	1	-1	-1	-1	-1	1	1	z	
$B_{2 \mu}$	1	-1	1	-1	-1	1	-1	1	y	
$B_{3 u}$	1	-1	-1	1	-1	1	1	-1	x	

$C_{2 h}$	E	C_{2}	i	σ_{h}		
A_{g}	1	1	1	1	R_{z}	$x^{2}, y^{2}, z^{2}, x y$
B_{g}	1	-1	1	-1	R_{x}, R_{y}	$x z, y z$
A_{u}	1	1	-1	-1	z	
B_{u}	1	-1	-1	1	x, y	

C_{4}	E	$2 C_{4}$	C_{2}	$2 \sigma_{v}$	$2 \sigma_{d}$		
A_{1}	1	1	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	1	-1	-1	R_{z}	
B_{1}	1	-1	1	1	-1		$x^{2}-y^{2}$
B_{2}	1	-1	1	-1	1		$x y$
E	2	0	-2	0	0	$(x, y)\left(R_{x}, R_{y}\right)$	$(x z, y z)$

1. d^{2} with $C=4.42 B$
 d^{2}

2. d^{3} with $C=4.5 B$

3. d^{4} with $C=4.61 B$

4. d^{5} with $C=4.477 B$

