UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012/13

み 水

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C302

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

A list of integrals, a data sheet and a periodic table are attached

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

(a)	Distinguish between a bonding and an anti-bonding molecular orbital	[6]
(b)	 Consider the following species: NCl, NCl⁺, and NCl⁻. (i) Draw the molecular orbital energy diagram for NCl. (ii) Write the valence electron configuration of the three species. (iii) Determine the bond order for each species. (iv) Determine whether the species is paramagnetic or not; indicate the number unpaired electrons in each case. 	[4] [3] [3] er of [3]
(c)	The term symbol for the ground state of N_2^+ is ${}^2\Sigma_g^+$.	

- (i) What is the total spin and orbital angular momentum of the molecule?
- (ii) Show that the term symbol agrees with the electron configuration predicted by the building up principle. [4]

[2]

Question 2 (25marks)

(a) The energy levels of a hydrogenic atom are given by the following equation:

 $E_n = -\frac{R_H h c Z^2}{n^2}$, where R_H is the Rydeberg constant, Z the nuclear charge and n = 1, 2, 3, ...

- (i) Calculate the wavelength of a photon emitted when an electron goes from n = 3 to n = 2 in the hydrogenic atom He⁺. [4]
- (ii) What is the wavenumber of the first line in the Lyman series of He⁺? (For Lyman series , $n_2 \rightarrow n_1$, with $n_1 = 1$, and $n_2 = 2, 3, ...$) [3]
- (b) The wavefunction for a 2s orbital of a hydrogen atom is $\psi_{2s} = N(2 r/a_0)e^{-r/2a_0}$. Determine the normalization constant N. [6]

(c) State whether the following transitions are allowed or forbidden in a hydrogen atom. In each case give a reason for your answer.

(i)
$$3d \rightarrow 2s$$
 (ii) $3p \rightarrow 1s$ [4]

- (d) What is the lowest term symbol for Ti³⁺ if the first two electrons to be lost are the 4s electrons. [5]
- (e) Calculate the magnitude of the orbital angular momentum of a 4d electron in a hydrogenic atom. [3]

Question 3 (25 marks)

- (a) Suppose that you wish to characterize the normal modes of benzene in the gas phase. Why is it important to obtain both infrared absorption and Raman spectra of your sample? [5]
- (b) How many normal modes of vibration are there for the following molecules?
 (i) C₆H₆ (ii) C₆H₅CH₃ (iii) HC=C-C=CH [6]
- (c) Which of the following molecules may show infrared absorption spectra?
 (i) CH₃CH₃ (ii) CH₄ (iii) CH₃Cl (iv) N₂ [4]
- (d) The fundamental and first overtone transitions of ¹⁴N¹⁶O are centred at 1876.06 cm⁻¹ and 3724.20 cm⁻¹, respectively. Calculate
 - (i) the equilibrium vibrational frequency and the anharmonicity constant,

[5]

[2]

[3]

- (ii) the exact zero point energy (in cm^{-1}),
- (iii) the force constant.

Question 4 (25 marks)

- (a) By substituting in the Schrödinger equation for the harmonic oscillator, show that the wave function, $\psi_0 = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{-\alpha x^2/2}$ (where $\alpha = \sqrt{\frac{km}{\hbar^2}}$, k is the force constant and m the mass of the oscillator), is an eigenfunction of the total energy operator, $\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2}kx^2$ and determine the eigenvalue. [10]
- (b) The force constant of ${}^{1}H^{19}F$ molecule is 966 N m⁻¹. [Isotopic masses are ${}^{1}H$ 1.0078 u and ${}^{19}F$ 18.9984 u].
 - (i) Calculate the zero point vibrational energy for this molecule [5]
 - (ii) If this amount of energy were converted to translational energy, how fast would the molecule be moving? [3]
 - (iii) Calculate the frequency of light needed to excite the molecule from the ground state to the first excited. [3]
- (c) A gas phase ¹H¹⁹F molecule, with a bond length of 91.7 pm, rotates in a three dimensional space. Calculate the smallest quantum of energy that can be absorbed by this molecule in a rotational state. [4]

Question 5 (25 marks)

- (a) Describe how a wavefunction determines the dynamical properties of a system and how those properties may be predicated. [4]
- (b) Consider a particle in a one dimensional box defined by V(x) = 0 for 0<x<L and V(x)
 = ∞ for x ≥ L, x ≤ 0. Explain why the following functions are not acceptable as wavefunctions for this system.

(i)
$$A\cos\frac{n\pi x}{L}$$
 (ii) $\frac{D}{\sin n\pi x/L}$ [4]

(c) Calculate the probability that a particle in a one dimensional box of length L is found between 0.31L and 0.35L when it is described by the following wavefunctions:

(i)
$$\sqrt{\frac{2}{L}}\sin\left(\frac{\pi x}{L}\right)$$
 (ii) $\sqrt{\frac{2}{L}}\sin\left(\frac{3\pi x}{L}\right)$

- (iii) What would you expect for a classical particle? Compare your results in the two cases with the classical result. [8]
- (d) Are the eigenfunctions of \hat{H} for the particle in a one dimensional box also eigen functions of the position operator, \hat{x} ? Explain. [2]
- (e) Calculate the average value of x for the case when n = 3 i.e. when $\psi = \sqrt{\frac{2}{L}} \sin\left(\frac{3\pi x}{L}\right)$.

Explain your result by comparing it with what you would expect for a classical particle. [7]

Question 6 (25 marks

- (a) Classify the following molecules as asymmetric top, spherical top or symmetric top and indicate which will have a rotational spectrum.
 (i) C₆H₆
 (ii) PH₃
 (iii) PCl₅
 (iv) H₂O
 [6]
- (b) The rotational spectrum of ${}^{79}\text{Br}{}^{19}\text{F}$ shows a series of equidistant lines 0.71433 cm⁻¹ apart. The atomic masses of ${}^{19}\text{F}$ and ${}^{79}\text{Br}$ are 18.9984 u and 78.9183 u, respectively.
 - (i) Calculate the bond length of the molecule. [6]
 - (ii) Determine the wavenumber of the $J = 9 \rightarrow J = 10$ transition. [3]
 - (iii) Find which transition gives rise to the most intense spectral line at 300 K. [5]
 - (iv) Assuming that bond length is unchanged by isotopic substitution, calculate the spacing in the rotational spectrum of ⁸¹Br¹⁹F. (Isotopic mass of ⁸¹Br is 80.9163 u) [5]

USEFUL INTEGRALS

- (1) $\int x^n dx = \frac{1}{(n+1)} x^{n+1}, \quad n \neq -1$
- (2) $\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}} \quad a > 0, \text{ n positive integer}$

(3)
$$\int \sin^2 ax dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax + \cos \tan t$$

- (4) $\int \sin\theta d\theta = -\cos\theta + \cos\tan t$
- (5) $\int x \sin^2 ax \, dx = \frac{x^2}{4} \frac{x \sin 2ax}{4a} \frac{\cos 2ax}{8a^2} + \cos \tan t$
- (6) $\int \cos^2 \theta d\theta = \frac{\theta}{2} + \frac{1}{4} \sin 2\theta + \cos \tan t$

(7)
$$\int_0^{\pi} x \sin x \, dx = \frac{\pi^2}{2}$$

(8)
$$dT = r^2 dr \sin\theta d\theta d\phi$$

General data and fundamental constants

)

1

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁴ m s ⁻¹
Elementary charge	¢	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_{A}k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N,	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m,	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m,	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε.	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ,	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} T^2 J^{-1} m^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5,050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_{e} = 4\pi \epsilon_{e} \hbar/m_{e} c^{2}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{m} = m_{e}e^{4}/8h^{3}c\varepsilon_{n}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	- •	
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	Ğ	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²
		•

Conversion factors

l cal = 1 eV =	4.184 joules (J) 1.602 2 X 10 ⁻¹⁹ J	1 erg 1 eV/molecule		1 X 10'' J 96 485 kJ mol''				
Prefixes	femto pico nano	μ m · c micro milli centi 10 ⁻⁶ 10 ⁻³ 10 ⁻²	deci	k M G kilo m eg a giga 10 ³ 10 ⁶ 10 ⁹				

PERIODIC TABLE OF ELEMENTS

								G	ROUPS									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	٨١	11/	IIIB	IVB	-YB	VIB	VIIB		VIIIB		18	118	IIIA	IVA	VA	VIA	- VIIA	VIIIA
	1,008							•									•	4.003
- 1	H																•	Ile
			1	Atomic mass - 10.811 12.011 14.007 15.999 18.998 20.180												20.180		
	6.941	9.012												12.011	14.007 N	15.999	18.998 F	-Ne
2	Li	Bc											► B	C	7	0 8	г 9	10
	22:990	24:305		26.982 28.086 30.974 32.06 35.453										39.948				
3	Na	Mg				TRAN	SITION	ELEM	ENTS				Al	Si ·	P	S	CI	Ar
	11	12								*			13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69 *	63.546	65.39 .	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V .	Cr	Mn	Fe	Coí	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr.
	19	20	21	22	23	24	25	· 26	27	28	29	30	31	32	33	34	. 35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
w	37	38	39	40	41	42	43		45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55 .	56	57	72	73	74	75	76	77	78	.79	80	81	82	83	84	85	86
-	223 E.	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)	}	•	•					
7	Fr 87	Ra 88	**Ac 89	Rf 104	Ha 105	Unh 106	Uns	Uno	Une 109	Uun								
.	0/	00	07	104		100	107.	108	109	110]							
					•	······································	····			~			·····				<u> </u>	ì
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167-26	168.93	173.04	.97	
*Lanthanide Series		S	Ce 58	Pr 59	Nd	Pm	Sm	Eu	Gd	Tb	Dy	.Ho	- Er 68	Tm 69	Yb 70	u 71		
•					60	61	62	63	64	65	66	. : 67	1	1		8	Į	
**Actinide Series			232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)		
-			Th	Pa	U	Np	Pu ·	Åm	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
				90	91	92	93	94	95	-96	97	98	99	100	101	102	103	

() indicates the mass number of the isotope with the longest half-life.

- ¥

. . F