UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012/13

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C302

TIME:
THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

A list of integrals, a data sheet and a periodic table are attached
Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

(a) Distinguish between a bonding and an anti-bonding molecular orbital
(b) Consider the following species: $\mathrm{NCl}, \mathrm{NCl}^{+}$, and NCl^{-}.
(i) Draw the molecular orbital energy diagram for NCl .
(ii) Write the valence electron configuration of the three species.
(iii) Determine the bond order for each species.
(iv) Determine whether the species is paramagnetic or not; indicate the number of unpaired electrons in each case.
(c) The term symbol for the ground state of $\mathrm{N}_{2}{ }^{+}$is ${ }^{2} \Sigma_{g}^{+}$.
(i) What is the total spin and orbital angular momentum of the molecule?
(ii) Show that the term symbol agrees with the electron configuration predicted by the building up principle.

Question 2 (25marks)

(a) The energy levels of a hydrogenic atom are given by the following equation: $E_{n}=-\frac{R_{H} h c Z^{2}}{n^{2}}$, where R_{H} is the Rydeberg constant, Z the nuclear charge and $\mathrm{n}=1,2,3, \ldots$
(i) Calculate the wavelength of a photon emitted when an electron goes from $\mathrm{n}=$ 3 to $\mathrm{n}=2$ in the hydrogenic atom He^{+}.
(ii) What is the wavenumber of the first line in the Lyman series of He^{+}? (For Lyman series, $\mathrm{n}_{2} \rightarrow \mathrm{n}_{1}$, with $\mathrm{n}_{1}=1$, and $\mathrm{n}_{2}=2,3, \ldots$)
(b) The wavefunction for a 2 s orbital of a hydrogen atom is $\psi_{2 s}=N\left(2-r / a_{0}\right) e^{-r / 2 a_{0}}$. Determine the normalization constant N .
(c) State whether the following transitions are allowed or forbidden in a hydrogen atom. In each case give a reason for your answer.
(i) $3 \mathrm{~d} \rightarrow 2 \mathrm{~s}$
(ii) $3 \mathrm{p} \rightarrow 1 \mathrm{~s}$
(d) What is the lowest term symbol for Ti^{3+} if the first two electrons to be lost are the 4 s electrons.
(e) Calculate the magnitude of the orbital angular momentum of a 4 d electron in a hydrogenic atom.

Question 3 (25 marks)

(a) Suppose that you wish to characterize the normal modes of benzene in the gas phase. Why is it important to obtain both infrared absorption and Raman spectra of your sample?
(b) How many normal modes of vibration are there for the following molecules?
(i) $\mathrm{C}_{6} \mathrm{H}_{6}$
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
(iii) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
(c) Which of the following molecules may show infrared absorption spectra?
(i) $\mathrm{CH}_{3} \mathrm{CH}_{3}$
(ii) CH_{4}
(iii) $\mathrm{CH}_{3} \mathrm{Cl}$
(iv) N_{2}
(d) The fundamental and first overtone transitions of ${ }^{14} \mathrm{~N}^{16} \mathrm{O}$ are centred at $1876.06 \mathrm{~cm}^{-1}$ and $3724.20 \mathrm{~cm}^{-1}$, respectively. Calculate
(i) the equilibrium vibrational frequency and the anharmonicity constant, [5]
(ii) the exact zero point energy (in cm^{-1}),
(iii) the force constant.

Question 4 (25 marks)

(a) By substituting in the Schrödinger equation for the harmonic oscillator, show that the wave function, $\psi_{0}=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha x^{2} / 2}$ (where $\alpha=\sqrt{\frac{k m}{\hbar^{2}}}, \mathrm{k}$ is the force constant and m the mass of the oscillator), is an eigenfunction of the total energy operator, $\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} k x^{2}$ and determine the eigenvalue.
(b) The force constant of ${ }^{1} \mathrm{H}^{19} \mathrm{~F}$ molecule is $966 \mathrm{~N} \mathrm{~m}^{-1}$. [lsotopic masses are ${ }^{1} \mathrm{H} 1.0078 \mathrm{u}$ and $\left.{ }^{19} \mathrm{~F} 18.9984 \mathrm{u}\right]$.
(i) Calculate the zero point vibrational energy for this molecule
(ii) If this amount of energy were converted to translational energy, how fast would the molecule be moving?
(iii) Calculate the frequency of light needed to excite the molecule from the ground state to the first excited.
(c) A gas phase ${ }^{1} \mathrm{H}^{19} \mathrm{~F}$ molecule, with a bond length of 91.7 pm , rotates in a three dimensional space. Calculate the smallest quantum of energy that can be absorbed by this molecule in a rotational state.

Question 5 (25 marks)

(a) Describe how a wavefunction determines the dynamical properties of a system and how those properties may be predicated.
(b) Consider a particle in a one dimensional box defined by $V(x)=0$ for $0<x<L$ and $V(x)$ $=\infty$ for $\mathrm{x} \geq \mathrm{L}, \mathrm{x} \leq 0$. Explain why the following functions are not acceptable as wavefunctions for this system.
(i) $A \cos \frac{n \pi x}{L}$
(ii) $\frac{D}{\sin n \pi x / L}$
(c) Calculate the probability that a particle in a one dimensional box of length L is found between 0.31 L and 0.35 L when it is described by the following wavefunctions:
(i) $\sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right)$
(ii) $\sqrt{\frac{2}{L}} \sin \left(\frac{3 \pi x}{L}\right)$
(iii) What would you expect for a classical particle? Compare your results in the two cases with the classical result.
(d) Are the eigenfunctions of \hat{H} for the particle in a one dimensional box also eigen functions of the position operator, $\hat{\mathrm{x}}$? Explain.
(e) Calculate the average value of x for the case when $\mathrm{n}=3$ i.e. when $\psi=\sqrt{\frac{2}{L}} \sin \left(\frac{3 \pi x}{L}\right)$.

Explain your result by comparing it with what you would expect for a classical particle.

Question 6 (25 marks

(a) Classify the following molecules as asymmetric top, spherical top or symmetric top and indicate which will have a rotational spectrum.
(i) $\mathrm{C}_{6} \mathrm{H}_{6}$
(ii) PH_{3}
(iii) PCl_{5}
(iv) $\mathrm{H}_{2} \mathrm{O}$
[6]
(b) The rotational spectrum of ${ }^{79} \mathrm{Br}^{19} \mathrm{~F}$ shows a series of equidistant lines $0.71433 \mathrm{~cm}^{-1}$ apart. The atomic masses of ${ }^{19} \mathrm{~F}$ and ${ }^{79} \mathrm{Br}$ are 18.9984 u and 78.9183 u , respectively.
(i) Calculate the bond length of the molecule.
(ii) Determine the wavenumber of the $\mathrm{J}=9 \rightarrow \mathrm{~J}=10$ transition.
(iii) Find which transition gives rise to the most intense spectral line at 300 K . [5]
(iv) Assuming that bond length is unchanged by isotopic substitution, calculate the spacing in the rotational spectrum of ${ }^{81} \mathrm{Br}^{19} \mathrm{~F}$. (Isotopic mass of ${ }^{81} \mathrm{Br}$ is 80.9163 u)

USEFUL INTEGRALS

(1) $\int x^{n} d x=\frac{1}{(n+1)} x^{n+1}, \quad \mathrm{n} \neq-1$
(2) $\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}} a>0$, n positive integer
(3) $\int \sin ^{2} a x d x=\frac{x}{2}-\frac{1}{4 a} \sin 2 a x+$ cons $\tan t$
(4) $\int \sin \theta d \theta=-\cos \theta+$ cons $\tan t$
(5) $\int x \sin ^{2} a x d x=\frac{x^{2}}{4}-\frac{x \sin 2 a x}{4 a}-\frac{\cos 2 a x}{8 a^{2}}+$ cons $\tan t$
(6) $\int \cos ^{2} \theta d \theta=\frac{\theta}{2}+\frac{1}{4} \sin 2 \theta+$ cons $\tan t$
(7) $\int_{0}^{\pi} x \sin x d x=\frac{\pi^{2}}{2}$
(8) $d T=r^{2} d r \sin \theta d \theta d \phi$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{A^{\prime}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-33} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\lambda} \mathrm{k}$	$8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $6.2364 \times 10 \mathrm{~L}^{\text {Torr }} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Planck constant	h	$6.62608 \times 10^{.44} \mathrm{~J} \mathrm{~s}$
	$h=\mathrm{h} / 2 \pi$	$1.05457 \times 10^{.44} \mathrm{~J} \mathrm{~s}$
Avogadro constant	$\mathrm{N}_{\text {A }}$	$6.02214 \times 10^{23} \mathrm{~mol}^{-4}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	m_{4}	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{\square}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\begin{aligned} & \varepsilon_{o}=1 / c^{2} \mu_{0} \\ & 4 \pi \varepsilon_{0} \end{aligned}$	$\begin{aligned} & 8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1} \\ & 1.11265 \mathrm{X}^{-10} \mathrm{~J}^{-10} \mathrm{C}^{2} \mathrm{~m}^{-1} \end{aligned}$
Vacuum permeability	μ_{0}	$\begin{aligned} & 4 \pi \times 10^{-7} \mathrm{Js}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1} \\ & 4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{r}^{-1} \mathrm{~m}^{3} \end{aligned}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} \% / 2 \mathrm{~m}_{\mathrm{s}}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{1}$
nuclear	$\mu_{N}=e N / 2 m_{0}$	$5,05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	g_{e}	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \dagger / m_{e} e^{2}$.	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} / 2 h$	7.29735×10^{-3}
Rydberg constant	$\mathrm{R}_{n}=\mathrm{m}_{0} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \mathrm{c} \varepsilon_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall ${ }^{\text {Gravitational constant }}$	$\stackrel{g}{G}$	$9.80665 \mathrm{~ms} \mathrm{~s}^{-2}$ $6.67259 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{Kkg}^{-2}$

Conversion factors

1 cal	4.184 joules (J)			1 erg			$=$$=$	$1 \times 10^{-7} \mathrm{~J}$		
1 eV	1.6022	X 10^{-19}		$1 \mathrm{eV} / \mathrm{m}$	nolecule			9648	kJ m	
Prefixes	f	p	n	μ	m	c	d	k	M	G
	femto	pico	nano	micro	milli	centi	deci	kilo	mega	giga
	10^{-15}	10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{2}	10^{-1}	10^{3}	10^{6}	10^{9}

									ROUPS									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
pmotos	11	$11 \times$	1113	1V8	VB	VIB	V11B		V1118		18	113	111 A	IVA	VA	VIA	VIIA	VIIIA
. 1	$\begin{gathered} 1.0108 \\ 11 \\ 1 \\ \hline 6011 \end{gathered}$.																$\begin{gathered} 4.003 \\ 110 \\ 2 \\ \hline \end{gathered}$
	6.941	9.012									Alom	mass -	10.811	12.011	14.007	15.999	18.998	20.180
2	Li	- Bc										bol -	$t B$	C	N	\bigcirc	F	- Ne
2	3	4									Alom	No.	- 5	6	7	8	9	10
	22.990	24:305											26.982	28.086	30.974	32.06	35.453	39.948
3	Na	Mg				TRAN	ITION	ELCM	ENTS				Al	Si	P	S	Cl	Ar
	11	12				TRAN	,	LLEM					13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933:	58.69	-63.546	65.39 .	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	$2]$	24	25	26	27	28	29	30	31	32	33	34	35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.9.1	106.42	107.87	112.41	114.82	118.71	121.75	127.00	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	RH	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Re.	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	P 0	At	Rn .
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)								
7	Ir	IRa	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun								
	87	88	89	104	105	106	107	108	109	110								
					-													
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	97	
*Lanthanide Scrics				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	- Er	Tm	Yb	-4	
				58	59	60	61	62	63	64	65	66	:67	68	69	70	71	
**Actinide Scries				232.04	231,04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	

() indicates the mass number of the isolope with the longest half-life.

