UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2012/13

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C302

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

A data sheet and a periodic table are attached

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

- (a) (i) Write down the expression for the energy of a one dimensional harmonic oscillator, defining all the terms. [4]
 - (ii) Assuming that the vibrations of a ${}^{14}N_2$ molecule are equivalent to those of a harmonic oscillator with force constant k = 2293.8 Nm⁻¹, what is the zero point energy of vibration of this molecule. (The mass of a ${}^{14}N$ atom is 14.0041 u). [4]
 - (iii) Calculate the wavelength of a photon needed to excite a transition between neighbouring levels in a nitrogen molecule. [3]
- (b) Evaluate the kinetic energy of a particle on a ring that is described by the wavefunction $\Psi = N \cos \varphi$, $0 \le \varphi \le 2\pi$ and $\hat{T} = -\frac{\hbar^2}{2I} \frac{d^2}{d\varphi^2}$. [4]
- (c) The particle on a ring is a useful model for the motion of electrons around the phorphine ring (see below), the conjugated macrocycle that forms the structural basis of the haem group and chlorophylls. Treat the group as a circular ring of radius 440 pm with 22 electrons in the conjugated system moving along the perimeter of the ring. Assume that in the ground state of the molecule each state is occupied by two electrons.
 - (i) Calculate the energy of an electron in the highest occupied level [5]
 - (ii) Calculate the frequency of radiation that can induce a transition between the highest occupied and lowest unoccupied level. [5]

phorphine

Question 2 (25marks)

(a)	Use molecular orbital theory to explain why the binding energy of N_2^+ is less than										
	that of N_2 whilst that of O_2^+ is greater than that of O_2 .	[6]									
(b)	Give the valence bond description of the bonding in ammonia, NH ₃ .	[4]									
(c)	Use molecular orbital theory to assign the following bond lengths and binding energies to the following species.:	5									
	Species: H_2^+ , H_2 , He_2^+ , He_2										
I.	Bond lengths (pm): 74, 106, 108, 6000										
1	Binding energy (kJ/mol): << 1, 241, 268, 457	[6]									
(d)	Consider the ions NO ⁻ and C_2^+										
	(i) Draw the molecular orbital energy diagram for each species	[4]									
	(ii) Write down the electron configuration and give the multiplicity of the grou	ind									
	states.	[4]									

(iii) Which ion should have the longer bond length?

[1]

[5]

Question 3 (25 marks)

- (a) Briefly explain why the 2s and 2p subshells are degenerate in the hydrogen atom but are not degenerate in an atom with two or more electrons [5]
- (b) Locate the radial nodes in the 3p orbital of a hydrogen atom. The radial wavefunction is $R_{3p} = N(4 - \frac{1}{3}\rho)\rho e^{-\rho/6}$, where $\rho = \frac{2Zr}{a_0}$ and N is a normalization constant. [5]
- (c) Derive the ground state term symbol for cerium, $[Xe]4f^{1}5d^{1}6s^{2}$ [5]
- (d) The term symbol for a particular state is ${}^{3}F_{2}$.
 - (i) What are the values of L, S, and J for this state?
 - (ii) What is the minimum number of electrons which could give rise to this state?
 - (iii) Suggest a possible electron configuration.
- (e) (i) Explain why the ${}^{2}P \rightarrow {}^{2}S$ transition is split into a doublet in the emission spectrum of potassium and rubidium.
 - (ii) For which of these elements is the splitting greater? [5]

Question 4 (25 marks)

- (a) Consider the sulphur dioxide molecule, SO₂:
 - Describe its vibrational modes (i)
 - Indicate the modes which show infrared activity and why [2] (ii)

[3]

[1]

10 83

- (iii) Label each mode as parallel or perpendicular.
- The wavenumber of the fundamental vibrational transition of ⁷⁹Br⁸⁰Br is 323.2 cm⁻¹. (b) Calculate the force constant of the bond. [isotopic masses are ⁷⁹Br 78.9183 u and ⁸⁰Br 80.9163 u]. [4]
- The infrared spectrum of HCN shows strong bands at 721.1 cm⁻¹ and 3312.0 cm⁻¹. (c) There is a strong Raman band at 2089.0 cm⁻¹. There are weaker infrared bands at 1412.0 cm⁻¹, 2116.7 cm⁻¹, 2800.3 cm⁻¹, 4004.5 cm⁻¹, 5394 cm⁻¹ and 6521.7 cm⁻¹. Identify these bands as fundamental, overtone or combination bands. Give your [6] reasons.
- For ${}^{127}I^{35}Cl$, $\bar{\nu} = 384.3 \text{ cm}^{-1}$ and $\bar{\nu}\chi_e = 1.5 \text{ cm}^{-1}$. (d)
 - Calculate the frequency in wavenumbers of the fundamental band, the first (i) overtone band and the lowest frequency hot band. [6] [3]
 - Calculate the exact zero point energy (in cm^{-1}) (ii)

Question 5 (25 marks)

- Explain why Einstein's introduction of quantization accounted for the heat capacities (a) of metals at low temperatures. [4]
- (b) The work function of platinum is 5.65 eV.
 - What is the minimum frequency of light required to observe the photoelectric (i) effect on platinum?
 - If light with a 150-nm wavelength is absorbed by the surface, what is the (ii) velocity of the emitted electrons? [6]
- What speed does a H₂ molecule have if it has the same momentum as a photon of (c) wavelength 280 nm? [4]
- (d) Show that f(x) is an eigenfunction of the operator A

(i)
$$f(x) = 3\sin 5x$$
 $\hat{A} = \frac{d^2}{dx^2}$
(ii) $f(x) = 2y^3 e^{3z}$ $\hat{A} = \frac{\partial}{\partial z}$
[6]

(e) Evaluate the commutator
$$\left[\hat{A}, \hat{B}\right]$$
 where $\hat{A} = \frac{d}{dx} - x$ and $\hat{B} = \frac{d}{dx} + x$ [5]

Question 6 (25 marks)

The transition $J = 3 \leftarrow 2$ in the rotational spectrum of ${}^{12}C^{16}O$ is observed at 11.5901 cm⁻¹. The isotopic masses of ${}^{12}C$, ${}^{13}C$ and ${}^{16}O$ are 12.0000 u, 13.0034 u and 15.9949 u, respectively.

(a) What is the separation between individual lines in the rotational spectrum of ${}^{12}C{}^{16}O?$

[5]

[6]

- (b) Calculate the bond length in this molecule.
- (c) What is the separation between the first member of the R-branch and the first member of the P-branch in the fundamental absorption band? [3]
- (d) Calculate the relative population of the J = 3 and J = 4 energy levels of ${}^{12}C^{16}O$ at 25 ${}^{\circ}C$. [5]
- (e) What is the separation between individual lines in the rotational spectrum of ${}^{13}C^{16}O?$ [6]

General data and fundamental constants

>

Quantity	Symbol	Value
Speed of light	C	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A c$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻¹³ J K ⁻¹
Gas constant	$R = N_{A}k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m,	9.109 39 X 10 ⁻¹¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m,	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε ₀	$1.112\ 65\ X\ 10^{-10}\ J^{-1}\ C^2\ m^{-1}$
Vacuum permeability	μ	$4\pi X 10^{-7} J s^2 C^{-2} m^{-1}$
		$4\pi \ge 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton		3
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5,050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_0 = 4\pi \epsilon_0 \hbar/m_e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\pi} = m_e^4/8h^3c\epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

n.

1 cal =	4.184 joules (.	1 erg				1 X 10 ⁻⁷ J			
1 eV =	1.602 2 X 10 ⁻¹	1 eV/molecule				96 485 kJ mol ⁻¹			
Prefixes	f p	n	µ	m ·	c	d	k	M	G
	femto pico	nano	micro	milli	centi	deci	kilo	mega	giga
	10 ⁻¹³ 10 ⁻¹²	10 ⁻⁹	10-6	10 ⁻³	10 ⁻²	10 ⁻¹	10 ³	10 ⁶	10 ⁹

i

PERIODIC TABLE OF ELEMENTS

GROUPS																		
	1	2	3	4	5	6	7	8 .	9	10	11	12	13	14	15	16	17	18
PERIODS	1/	11/	IIIB	IVB	·VB	VIB	VIIB	<u> </u>	VIIIB		18	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
	1,008							•	•									4.003
. 1	II																•	lle
			-											-				2
	6.941	9.012		Atomic mass - + 10.811 12.011 14.007 15.999 18.998											20.180			
2	Li	Be									Syr	nbol —	► B	C	N	0	F	-Ne
	<u> </u>	44							•		Atom	nic No. 🗌	5	6	7	8	9	. 10
	22.990	24:305	1	26.982 28.086 30.974 32.06 35.453 39.94													39,948	
3	Na	Mg											Ar					
Ũ	11	12	AI SI									Î5	16	17	18			
	10 008	40.078	14 056	17 00	50.042	51.002	64.020	65.047	60.022	60.00		1 66.30	60.700	00.01	a. 000	70.00	70.004	07.00
	17.070	Co	5 S -	47.80	30.942	51.990	34.938	55.84/	38.933	58.69	T03.540	05.39 -	69.723	72.61	14,922	18.90	79.904 D	83.80
4	19	20	21	22	27			26		111			Ga	Ge	AS	Se	Br	26
<u> </u>	85 468	87.62	88 006	01 224	02.006	05.04	23	101:07	102.01	106.12	107.87	30	114 02	22	22	107.60	126.00	121.20
E	121	51.02	V V	7.	72.900	9J.94	90.907	101.0/	102.94	100.42	107.87	112.41	114.82	118.71	121.75	127.00	120.90	131.2Y
-1	37	38	10	40		1/10	10	Ru		ru	Ag		10	5n	50	110	51	
	172 01	117 11	178.01	179.10	190.05	107.05	45	100.7	102.22	40	4/	200 50	49	207.2	209.09	(200)	(710)	(222)
	C.	17.55	*1.0.71	170.47	130.95	10.00	180.21	190.2	192.22	195.08	190.97	200.59	204.38	201.2	200.90	(209) D	(210)	(222) D.:.
0	55	Da 56	57	121	12	74	Re	Us			Au	lig		r D	101	10	At	
	223	226.03	(227)	(261)	(767)	(263)	(267)	10	(266)	(767)	19	00	01	02	20	04	0.0	00
7	Fr	Ra	** Å c		H2	Tlab	(202) Ilns	(203) Uno	(200) Uno	(207) Tlun		•			•			
	87	88	89	104	105	106	107	108	100	1 JIA								
, [<u> </u>						107.]							
					•					·····		·						
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97	
 *Lanthanide Series 			5	Ce	Pr .	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				36	<u>, 29</u>	60	61	62	63	64	. 65 .	66	.67	68	69	70	11	
** Actinide Series				232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
				Th	Pa	U '	Np	Pu -	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	

() indicates the mass number of the isotope with the longest half-life.

λ.γ

* * - * *