UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012

TITLE OF PAPER:	ADVANCED CHEMISTRY	INORGANIC
COURSE NUMBER:	C401	
TIME ALLOWED:	THREE (3) HOURS	
INSTRUCTIONS:	THERE ARE SIX (6) QUESTIONS.	
	ANSWER ANY FOUR (4) QUESTIONS.	
	EACH QUESTION IS WORTH 25	
	MARKS.	

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

(a) Identify the following reactions by their type (oxidative addition, reductive elimination, associative substitution, dissociative substitution, β-hydride elimination, ligand addition, ligand dissociation, etc). In some cases a reaction may have several steps. In that case list each step in the correct order.
(i) $\quad \mathrm{Re}\left(\mathrm{SiMe}_{3}\right)(\mathrm{CO})_{5}+\mathrm{PMe}_{3} \rightarrow \mathrm{Re}\left(\mathrm{SiMe}_{3}\right)(\mathrm{CO})_{4}\left(\mathrm{PMe}_{3}\right)+\mathrm{CO}$
(ii) $\mathrm{CpRu}(\mathrm{Et})\left(\mathrm{N} \equiv \mathrm{CCH}_{3}\right)_{2} \rightarrow \mathrm{CpRu}(\mathrm{H})\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)\left(\mathrm{N} \equiv \mathrm{CCH}_{3}\right)+\mathrm{N} \equiv \mathrm{CCH}_{3}$
(iii) $\mathrm{PtCl}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{N} \equiv \mathrm{CCH}_{3}\right) \rightarrow \mathrm{PtCl}\left(\mathrm{CH}_{3}\right)\left(\mathrm{PMe}_{3}\right)\left(\mathrm{N} \equiv \mathrm{CCH}_{3}\right)+\mathrm{CH}_{3} \mathrm{CH}_{3}$
(iv) $\mathrm{CpRh}\left(\mathrm{PMe}_{3}\right)_{2}+\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow \mathrm{CpRh}(\mathrm{H})(\mathrm{Ph})\left(\mathrm{PMe}_{3}\right)+\mathrm{PMe}_{3}$ (where $\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$)
(b) Sketch interactions of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$, with a metal atom via
(i) η^{2}
(ii) $\quad \eta^{4}$
(iii) η^{6}
[3]
(c) Suggest products in the following reactions, and give likely structures for the products:
(i) $\mathrm{Fe}(\mathrm{CO})_{5}$ irradiated with $\mathrm{C}_{2} \mathrm{H}_{4}$
(ii) $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ with $\mathrm{Na} / \mathrm{Hg}$
(iii) $\mathrm{Na}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]$ with ONCl
(iv) $\mathrm{Ni}(\mathrm{CO})_{4}$ with PPh_{3}
(d) (i) Select the best choice in each of the following isoelectronic compounds, and briefly justify the reason for the selection:
(1) Shortest $\mathrm{C}-\mathrm{O}$ bond: $\mathrm{Ni}(\mathrm{CO})_{4} ;\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-} ;\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
(2) Higher $\mathrm{C}-\mathrm{O}$ stretching frequency: $\mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{PF}_{3}\right) ; \mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)$
(ii) Comment on the observation that the vanadium-carbon distance in $\mathrm{V}(\mathrm{CO})_{6}$ is 200 pm , but only 193 pm in $\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}$.

QUESTION TWO

(a) Using the cluster valence electron (CVE) count suggest the metal cage framework adopted by each of the following clusters:
(i) $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{17}$
(ii) $\left[\mathrm{Rh}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{13}\right]$
(iii) $\left[\mathrm{Fe}_{4} \mathrm{~N}(\mathrm{CO})_{12}\right]^{-}$
(b) Use Wade's rules to suggest likely structures for
(i) $\mathrm{B}_{5} \mathrm{H}_{11}$
(ii) $\left[\mathrm{Os}_{6}(\mathrm{CO})_{19}\right]$
(iii) $\left[\mathrm{Ru}_{8}(\mathrm{CO})_{22}\right]^{2-}$
(c) Pick out pairs of isoelectronic species from the following list:
$\mathrm{Cr}(\mathrm{CO})_{3}, \mathrm{Co}(\mathrm{CO})_{3}, \mathrm{Mn}(\mathrm{CO})_{5}, \mathrm{Re}(\mathrm{CO})_{5}, \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mn}, \mathrm{Fe}(\mathrm{CO})_{3}{ }^{-}$
(d) Heating $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right]^{+}$with NaH gives A , having formula $\mathrm{FeC}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$, plus colourless gas \mathbf{B}. Molecule \mathbf{A} reacts rapidly at room temperature to eliminate colourless gas \mathbf{C}, forming solid \mathbf{D}, which has empirical formula $\mathrm{FeC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$. Compound D has two strong IR bands, one near $1850 \mathrm{~cm}^{-1}$, the other near 2000 cm^{-1}. Treatment of \mathbf{D} with iodine generates solid \mathbf{E} of empirical formula $\mathrm{FeC}_{7} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{I}$. Reaction of $\mathrm{NaC}_{5} \mathrm{H}_{5}$ with \mathbf{E} gives solid \mathbf{F} of formula $\mathrm{FeC}_{12} \mathrm{H}_{10} \mathrm{O}_{2}$. On heating \mathbf{F} gives off \mathbf{B}, leaving a sublimable, orange solid \mathbf{G} of formula $\mathrm{FeC}_{10} \mathrm{H}_{10}$. Propose structures for \mathbf{A} to \mathbf{G}.
(e) Which Ln^{3+} ion would you expect to show the same colour as
(i) Tb^{3+}.
(ii) Tm^{3+}
(iii) Sm^{3+}

QUESTION THREE

(a) A metal \mathbf{A} reacts with dimethylmercury to give metallic mercury and mercury free compound \mathbf{B}, \mathbf{B} contains 50.0% carbon and has the empirical formula $\mathrm{C}_{3} \mathrm{H}_{9} \mathbf{A}$. The mass spectrum of \mathbf{B} gives a molecular ion peak at $\mathrm{m} / \mathrm{z}=144$, and the ${ }^{1} \mathrm{H}$ NMR spectrum at $20^{\circ} \mathrm{C}$ consists of a sharp singlet at $\delta=-0.31$ which at $-65^{\circ} \mathrm{C}$ becomes two sharp singlets at $\delta=+0.07$ and $\delta=-0.50$, with relative intensities 1:2.
\mathbf{B} reacts with methylamine to produce the complex \mathbf{C} which has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{NA}$. Identify \mathbf{A}, \mathbf{B}, and \mathbf{C}.
(b) Following are classifications of organometallic reactions. Next to each type of reaction put letters which correspond to the nature of this reaction.

A: This reaction is also known for d^{0} complexes.
B: A change in d^{0} occurs.
C: A change in coordination number is involved.
(i) Migratory insertion.
(ii) Oxidative addition.
(c) Propose the main steps in the catalytic cycle for the conversion of 1-pentene to hexanal using $\mathrm{HRh}(\mathrm{CO})_{4}$ as the catalyst precursor.
(d) $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ catalyses the isomerization of alkenes:

$$
\mathrm{RCH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \rightarrow E-\mathrm{RCH}=\mathrm{CHMe}+Z-\mathrm{RCH}=\mathrm{CHMe}
$$

By determining the cluster valence electron (CVE) count for $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ deduce what makes this cluster an effective catalyst.
(e) For each of the following compounds:
$\left(\mathrm{Bu}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2} ; \quad\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ni} ; \quad \operatorname{Re}(\mathrm{CO})_{5}$
(i) Which compound could dimerise?
(ii) Which compound is not coordinatively saturated?
(iii) Which compound has more than 18 electrons?

QUESTION FOUR

(a) (i) Which of the following compounds behave as acids in liquid HF: $\mathrm{ClF}_{3}, \mathrm{BF}_{3}, \mathrm{SbF}_{5}, \mathrm{SiF}_{4}$?
(ii) Write equations to explain this behaviour.
(b) (i) Propose two syntheses for $\mathrm{MeMn}(\mathrm{CO})_{5}$ both starting with $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$, with one using Na and one using Br_{2}. You may use other reagents of your choice.
(ii) Some chemistry of sodium cyclopentadienyltricarbonyltungstate is shown below:
$\mathrm{Na}\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{3}\right]+\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl} \rightarrow \mathbf{A} \xrightarrow{2 N} \mathbf{B}$
(1) Propose structures for \mathbf{A} and \mathbf{B}.
(2) Describe the bonding of the acyclic hydrocarbon ligand to the metal in \mathbf{B}.
(c) The complex $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3}\right]_{2}$ reacts with I_{2} to give a product \mathbf{A} having three infrared bands near $2000 \mathrm{~cm}^{-1}$. This product reacts with triphenylphosphine, PPh_{3} to give B, which has two bands near $2000 \mathrm{~cm}^{-1}$. Identify \mathbf{A} and \mathbf{B}.
(d) (i) Propose organometallic fragments isolobal with the following:
(1) CH
(2) CH_{3}
(3) CH_{2}
(ii) Propose an organic fragment isolobal with:
(1) $\mathrm{Cr}(\mathrm{CO})_{5}$
(2) $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{+}$
(3) $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{-}$
[6]
(e) Predict whether the equilibrium constants for the following reactions should be greater than 1 (reaction lies to the right) or less than 1 (reaction lies to the left):
(i) $\mathrm{CdI}_{2}+\mathrm{CaF}_{2} \leftrightarrows \mathrm{CdF}_{2}+\mathrm{CaI}_{2}$
(ii) $\left[\mathrm{CuI}_{4}\right]^{2-}+\left[\mathrm{CuCl}_{4}\right]^{3-} \leftrightarrows\left[\mathrm{CuCl}_{4}\right]^{2-}+\left[\mathrm{CuI}_{4}\right]^{3-}$

QUESTION FIVE

(a) (i) Reaction of $\mathrm{Fe}(\mathrm{CO})_{5}$ with $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ in THF gives a salt $\mathrm{Na}_{2}[\mathrm{~A}]$ and CO. The Raman spectrum of $\left[\mathrm{Et}_{4}\right]_{2}[\mathrm{~A}]$ shows absorption at $160 \mathrm{~cm}^{-1}$ assigned to an unbridged $\mathrm{Fe}-\mathrm{Fe}$ bond. Suggest an identity and structure for $[\mathbf{A}]^{2-}$
(ii) Explain why the metallic radii of Ru and Os are similar, whereas the value of $r_{\text {metal }}$ for Fe is smaller than $r_{\text {meal }}$ for Ru.
(b) Draw a reasonable structure for $\left.\left[\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Nb}_{3}\left(\mu_{3}-\mathrm{CO}\right)(\mathrm{CO})_{6}\right]$.
(c) Suggest what change in cluster structure might accompany the reaction:

$$
\begin{equation*}
\left[\mathrm{Co}_{6}(\mathrm{CO})_{15} \mathrm{~N}\right]^{-} \rightarrow\left[\mathrm{Co}_{6}(\mathrm{CO})_{13} \mathrm{~N}\right]^{-}+2 \mathrm{CO} \tag{5}
\end{equation*}
$$

(d) (i) Confirm that $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{11}$ has sufficient valence electrons to adopt a triangular metal framework..
(ii) Do the modes of bonding of the CO and H ligands in (i) above affect the total valence electron count?
(iii) Comment on the fact that $\mathrm{H}_{2} \mathrm{Os}_{3}\left(\mathrm{CO}_{10}\right.$ also has a triangular Os_{3}-core.
(e) (i) Why are the colours of Ln^{3+} ions less intense than those of the first-row transition metal ions?
(ii) Why are Eu^{2+} and Yb^{2+} somewhat more stable with respect to oxidation than other Ln^{2+} cations?

QUESTION SIX

(a) Suggest products for the following reactions:
(i) $\mathrm{ClF}+\mathrm{BF}_{3} \rightarrow$
(ii) $\mathrm{CsF}+\mathrm{IF}_{5} \rightarrow$
(iii) $\mathrm{SbF}_{5}+\mathrm{ClF}_{5} \rightarrow$
(iv) $\mathrm{Me}_{4} \mathrm{NF}+\mathrm{IF}_{7} \rightarrow$
(b) Predict the structures of
(i) $\left[\mathrm{BrF}_{4}\right]^{-}$
(ii) $\left[\mathrm{ICl}_{2}\right]^{+}$
(c) (i) Determine the ground state term symbol for Yb^{3+}.
(ii) Calculate the g-value expected for Yb^{3+}.
(iii) Hence, calculate the effective magnetic moment, $\mu_{\text {eff }}$ of Yb^{3+}.
(d) Identify the starting isotopes \mathbf{A} and \mathbf{B} in each of the following syntheses of transactinoid elements:
(i) $\mathrm{A}+{ }_{2}{ }_{2} \mathrm{He} \rightarrow{ }^{256}{ }_{101} \mathrm{Md}+{ }^{1} \mathrm{on}$
(ii) $\mathbf{B}+{ }^{16}{ }_{8} \mathrm{O} \rightarrow{ }^{255}{ }_{102} \mathrm{No}+5\left({ }^{1} \mathrm{On}\right)$
(e) The hydrogenation of propene is catalysed by $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ or $\mathrm{HRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$. Outline the mechanism by which this reaction occurs using $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$, indicating clearly what the active catalyst is and explaining what is happening in each step.

PERIODIC TABLE OF ELEMENTS

GROUPS

PERIODS									-									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	IA	IIA	IIIB	IVB	VB	VIB	VIIB	VIIIB			IB	IIB	IILA	IVA	VA	VIA	VILA	VIIIA
1	$\begin{gathered} 1.008 \\ \mathbf{H} \\ 1 \\ \hline \end{gathered}$																	$\begin{gathered} 4.003 \\ \mathbf{H e} \\ 2 \\ \hline \end{gathered}$
2	$\begin{gathered} 6.941 \\ \mathbf{L i} \\ 3 \end{gathered}$	$\begin{gathered} 9.012 \\ \text { Be } \\ 4 \end{gathered}$												$\begin{gathered} 12.011 \\ C \\ 6 \end{gathered}$	$\begin{gathered} 14.007 \\ \mathbf{N} \\ 7 \end{gathered}$	$\begin{gathered} 15.999 \\ \mathbf{O} \\ 8 \end{gathered}$	$\begin{gathered} 18.998 \\ \mathbf{F} \\ 9 \end{gathered}$	$\begin{gathered} 20.180 \\ \mathrm{Ne} \\ 10 \end{gathered}$
3	$\begin{gathered} 22.990 \\ \mathrm{Na} \\ 11 \end{gathered}$	$\begin{gathered} 24.305 \\ \mathbf{M g} \\ 12 \end{gathered}$											$\begin{gathered} 26.982 \\ \mathbf{A l} \\ 13 \end{gathered}$	$\begin{gathered} 28.086 \\ \mathbf{S i} \\ 14 \end{gathered}$	$\begin{gathered} 30.974 \\ \mathbf{P} \\ 15 \end{gathered}$	$\begin{gathered} 32.06 \\ \mathrm{~S} \\ 16 \end{gathered}$	$\begin{gathered} 35.453 \\ \text { CI } \\ 17 \end{gathered}$	$\begin{gathered} 39.948 \\ \text { Ar } \\ 18 \end{gathered}$
4	$\begin{gathered} 39.098 \\ \mathbf{K} \\ 19 \\ \hline \end{gathered}$	$\begin{gathered} 40.078 \\ \mathrm{Ca} \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 44.956 \\ \mathrm{Sc} \\ 21 \\ \hline \end{gathered}$	$\begin{gathered} 47.88 \\ \mathbf{T i} \\ 22 \\ \hline \end{gathered}$	$\begin{gathered} 50.942 \\ \mathbf{V} \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} 51.996 \\ \mathbf{C r} \\ 24 \\ \hline \end{gathered}$	$\begin{gathered} 54.938 \\ \mathbf{M n} \\ 25 \\ \hline \end{gathered}$	$\begin{gathered} 55.847 \\ \mathrm{Fe} \\ 26 \end{gathered}$	$\begin{array}{\|c\|} \hline 58.933 \\ \text { Co } \\ 27 \\ \hline \end{array}$	$\begin{gathered} 58.69 \\ \mathbf{N i} \\ 28 \end{gathered}$	$\begin{gathered} 63.546 \\ \mathrm{Cu} \\ 29 \\ \hline \end{gathered}$	$\begin{gathered} 65.39 \\ \mathbf{Z n} \\ 30 \\ \hline \end{gathered}$	69.723 Ga 31	$\begin{gathered} \hline 72.61 \\ \mathbf{G e} \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} 74.922 \\ \text { As } \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 78.96 \\ \mathrm{Se} \\ 34 \\ \hline \end{gathered}$	$\begin{gathered} 79.904 \\ \mathbf{B r} \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 83.80 \\ \mathbf{K r} \\ 36 \\ \hline \end{gathered}$
5	$\begin{gathered} 85.468 \\ \mathbf{R b} \\ 37 \\ \hline \end{gathered}$	$\begin{gathered} 87.62 \\ \mathbf{S r} \\ 38 \\ \hline \end{gathered}$	$\begin{gathered} 88.906 \\ \mathbf{Y} \\ .39 \\ \hline \end{gathered}$	$\begin{gathered} 91.224 \\ \mathbf{Z r} \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 92.906 \\ \mathbf{N b} \\ 41- \\ \hline \end{gathered}$	$\begin{gathered} 95.94 \\ \text { Mo } \\ 42 \\ \hline \end{gathered}$	$\begin{gathered} 98.907 \\ \mathrm{Tc} \\ 43 \\ \hline \end{gathered}$	$\begin{gathered} 101.07 \\ \mathbf{R u} \\ 44 \\ \hline \end{gathered}$	$\begin{gathered} 102.91 \\ \mathbf{R h} \\ 45 \\ \hline \end{gathered}$	$\begin{gathered} 106.42 \\ \text { Pd } \\ 46 \\ \hline \end{gathered}$	$\begin{gathered} 107.87 \\ \mathbf{A g} \\ 47 \\ \hline \end{gathered}$	$\begin{gathered} 112.41 \\ \text { Cd } \\ 48 \\ \hline \end{gathered}$	$\begin{gathered} 114.82 \\ \text { In } \\ 49 \\ \hline \end{gathered}$	$\begin{gathered} 118.71 \\ \mathrm{Sn} \\ 50 \end{gathered}$	$\begin{gathered} 121.75 \\ \mathbf{S b} \\ 51 \\ \hline \end{gathered}$	$\begin{gathered} 127.60 \\ \mathrm{Te} \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} 126.90 \\ I \\ 53 \end{gathered}$	$\begin{gathered} 131.29 \\ \mathbf{X e} \\ 54 \\ \hline \end{gathered}$
6	$\begin{gathered} 132.91 \\ \text { Cs } \\ 55 \\ \hline \end{gathered}$	$\begin{gathered} 137.33 \\ \mathbf{B a} \\ 56 \\ \hline \end{gathered}$	$\begin{gathered} 138.91 \\ \text { *La } \\ 57 \\ \hline \end{gathered}$	$\begin{gathered} 178.49 \\ \text { Hf } \\ 72 \\ \hline \end{gathered}$	$\begin{gathered} 180.95 \\ \mathrm{Ta} \\ 73 \\ \hline \end{gathered}$	$\begin{gathered} 183.85 \\ \mathbf{W} \\ 74 \\ \hline \end{gathered}$	$\begin{gathered} 186.21 \\ \mathbf{R e} \\ 75 \\ \hline \end{gathered}$	$\begin{gathered} 190.2 \\ \mathrm{Os} \\ 76 \\ \hline \end{gathered}$	$\begin{gathered} 192.22 \\ \mathbf{I r} \\ 77 \\ \hline \end{gathered}$	$\begin{gathered} 195.08 \\ \text { Pt } \\ 78 \end{gathered}$	$\begin{gathered} 196.97 \\ \mathbf{A u} \\ 79 \\ \hline \end{gathered}$	$\begin{gathered} 200.59 \\ \mathbf{H g} \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 204.38 \\ \text { TI } \\ 81 \\ \hline \end{gathered}$	207.2 Pb 82	$\begin{gathered} 208.98 \\ \mathbf{B i} \\ 83 \\ \hline \end{gathered}$	$\begin{gathered} \hline(209) \\ \mathbf{P o} \\ .84 \\ \hline \end{gathered}$	$\begin{gathered} \hline(210) \\ \text { At } \\ 85 \\ \hline \end{gathered}$	$\begin{gathered} \hline(222) \\ \mathbf{R n} \\ 86 \\ \hline \end{gathered}$
7	$\begin{aligned} & 223 \\ & \mathbf{F r} \\ & 87 \end{aligned}$	$\begin{gathered} 226.03 \\ \mathbf{R a} \\ 88 \\ \hline \end{gathered}$	$\begin{gathered} (227) \\ * * \mathbf{A c} \\ 89 \end{gathered}$	$\begin{gathered} (261) \\ \mathbf{R f} \\ 104 \end{gathered}$	$\begin{gathered} (262) \\ \mathrm{Ha} \\ 105 \end{gathered}$	$\begin{gathered} (263) \\ \text { Unh } \\ 106 \end{gathered}$	$\begin{aligned} & (262) \\ & \text { Uns } \\ & 107 \end{aligned}$	$\begin{gathered} \hline(265) \\ \text { Uno } \\ 108 \end{gathered}$	$\begin{aligned} & \text { (266) } \\ & \text { Une } \\ & 109 \end{aligned}$	$\begin{aligned} & \text { (267) } \\ & \text { Uun } \\ & 110 \end{aligned}$					*			

*Lanthanide Series
**Actinide Series

$\begin{gathered} 140.12 \\ \text { Ce } \\ 58 \end{gathered}$	$\begin{gathered} 140.91 \\ \mathbf{P r} \\ 59 \end{gathered}$	$\begin{gathered} 144.24 \\ \mathrm{Nd} \\ 60 \end{gathered}$	$\begin{gathered} \hline(145) \\ \mathbf{P m} \\ 61 \end{gathered}$	$\begin{gathered} 150.36 \\ \mathrm{Sm} \\ 62 \end{gathered}$	$\begin{gathered} 151.96 \\ \mathbf{E u} \\ 63 \end{gathered}$	157.25 Gd 64	$\begin{gathered} 158.93 \\ \mathbf{T b} \\ 65 \end{gathered}$	$\begin{gathered} 162.50 \\ \text { Dy } \\ 66 \end{gathered}$	164.93 Ho 67	$\begin{gathered} 167.26 \\ \mathbf{E r} \\ 68 \end{gathered}$	$\begin{gathered} 168.93 \\ \operatorname{Tm} \\ 69 \end{gathered}$	$\begin{gathered} 173.04 \\ \mathbf{Y b} \\ 70 \end{gathered}$	$\begin{gathered} 174.97 \\ \mathbf{L u} \\ 71 \end{gathered}$
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

() indicates the mass number of the isotope with the longest half-life.

