UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012

TITLE OF PAPER:

ADVANCED

INORGANIC

CHEMISTRY

COURSE NUMBER:

C401

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS.

ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25

MARKS.

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

(ii)

(iii)

(iv)

(a)

		(where $Cp = r$	⁵ -C ₅ H ₅	;)			
(b)	Sketch (i)	interactions of η^2	benzer		a metal		[3]
(c)	Sugges		the fol	lowing reactio	ns, and	give likely structures	for the
	(i) (iii)	Fe(CO) ₅ irradi Na[Mn(CO) ₅]			(ii) (iv)	Re ₂ (CO) ₁₀ with Na/H Ni(CO) ₄ with PPh ₃	_
(d)	(i)(ii)	and briefly just (1) Shortest C (2) Higher C- Comment on	stify the O bor O stret the	reason for the nd: Ni(CC ching frequence	selection	$(CO)_4]^-$; $[Fe(CO)_4]^2$ - $(CO)_3(PF_3)$; $Ni(CO)_3(PN)$ $(CO)_3(PN)$	Me ₃)
QUE	STIO	N TWO					
(a)	adopte	the cluster vale d by each of th 6C(CO) ₁₇	e follov	wing clusters:	ount sug	gest the metal cage fra	mework [3]
(b)	Use W (i) B ₅	ade's rules to s		likely structure Os ₆ (CO) ₁₉]	s for	(iii) [Ru ₈ (CO) ₂₂] ²⁻	[9]
(c)		ut pairs of isoel 0)3, Co(CO)3, M		-		_	[3]
(d)	colour colour Compo cm ⁻¹ . FeC ₇ H On he	less gas B. Meless gas C, for ound D has two Treatment of I ₅ O ₂ I. Reaction	folecule orming o strong f D w n of N off B,	e A reacts rape solid D, which g IR bands, on ith iodine gen aC ₅ H ₅ with E , leaving a sui	idly at a ch has e near a chear a chea	naving formula FeC ₇ H ₀ room temperature to e empirical formula Fe 850 cm ⁻¹ , the other n solid E of empirical olid F of formula FeC e, orange solid G of	eliminate $C_7H_5O_2$. ear 2000 formula $C_{12}H_{10}O_2$.
(e)	Which (i) Tb	n Ln ³⁺ ion woul ³⁺ .	d you e (ii) T		the same (iii) S		[3]

Identify the following reactions by their type (oxidative addition, reductive elimination, associative substitution, dissociative substitution, β -hydride elimination, ligand addition, ligand dissociation, etc). In some cases a reaction

 $CpRu(Et)(N\equiv CCH_3)_2 \rightarrow CpRu(H)(CH_2=CH_2)(N\equiv CCH_3) + N\equiv CCH_3$

 $PtCl(CH_3)_3(PMe_3)(N \equiv CCH_3) \rightarrow PtCl(CH_3)(PMe_3)(N \equiv CCH_3) + CH_3CH_3$

may have several steps. In that case list each step in the correct order.

 $Re(SiMe_3)(CO)_5 + PMe_3 \rightarrow Re(SiMe_3)(CO)_4(PMe_3) + CO$

 $CpRh(PMe_3)_2 + C_6H_6 \rightarrow CpRh(H)(Ph)(PMe_3) + PMe_3$

QUESTION THREE

(a) A metal A reacts with dimethylmercury to give metallic mercury and mercury free compound B, B contains 50.0% carbon and has the empirical formula C_3H_9A . The mass spectrum of B gives a molecular ion peak at m/z = 144, and the ¹H NMR spectrum at 20 °C consists of a sharp singlet at $\delta = -0.31$ which at -65 °C becomes two sharp singlets at $\delta = +0.07$ and $\delta = -0.50$, with relative intensities 1:2.

B reacts with methylamine to produce the complex C which has the molecular formula $C_4H_{14}NA$. Identify A, B, and C. [6]

- (b) Following are classifications of organometallic reactions. Next to each type of reaction put letters which correspond to the nature of this reaction.
 - \mathbf{A} : This reaction is also known for d^0 complexes.
 - **B**: A change in d⁰ occurs.
 - C: A change in coordination number is involved.
 - (i) Migratory insertion.
 - (ii) Oxidative addition.

[4]

- (c) Propose the main steps in the catalytic cycle for the conversion of 1-pentene to hexanal using HRh(CO)₄ as the catalyst precursor. [8]
- (d) $H_2Os_3(CO)_{10}$ catalyses the isomerization of alkenes: $RCH_2CH=CH_2 \rightarrow E\text{-RCH}=CHMe + Z\text{-RCH}=CHMe$ By determining the cluster valence electron (CVE) count for $H_2Os_3(CO)_{10}$ deduce what makes this cluster an effective catalyst. [4]
- (e) For each of the following compounds:

 $(Bu_3P)_2Pt(CH_3)_2;$ $(\eta^5-C_5H_5)_2Ni;$ $Re(CO)_5$

- (i) Which compound could dimerise?
- (ii) Which compound is not coordinatively saturated?
- (iii) Which compound has more than 18 electrons? [3]

QUESTION FOUR

(a)	(i)	Which of the following compounds behave as acids in liquid HF: ClF ₃ , BF ₃ , SbF ₅ , SiF ₄ ?										
	(ii)	Write equations to explain this behaviour.	[3]									
(b)	(i)	Propose <u>two</u> syntheses for MeMn(CO) ₅ both starting with Mn ₂ (CO with one using Na and one using Br ₂ . You may use other reagents choice.	,									
	(ii)	Some chemistry of sodium cyclopentadienyltricarbonyltungstate is below:	s shown									
		 Na[(η⁵-C₅H₅)W(CO)₃] + CH₂=CHCH₂Cl → A ^{μν} → 1 (1) Propose structures for A and B. (2) Describe the bonding of the acyclic hydrocarbon liganometal in B. 										
(c)	infrare	emplex $[(\eta^5-C_5H_5)Mo(CO)_3]_2$ reacts with I_2 to give a product A having bands near 2000 cm ⁻¹ . This product reacts with triphenylphosphine B , which has two bands near 2000 cm ⁻¹ . Identify A and B .	ng three ne, PPh ₃ [4]									
(d)	(i)	Propose organometallic fragments isolobal with the following: (1) CH (2) CH ₃ (3) CH ₂										
	(ii)	Propose an organic fragment isolobal with: (1) $Cr(CO)_5$ (2) $[Co(CO)_4]^+$ (3) $[Fe(CO)_4]^-$	[6]									
(e)		t whether the equilibrium constants for the following r l be greater than 1 (reaction lies to the right) or less than 1 (reaction t): $CdI_2 + CaF_2 \leftrightarrows CdF_2 + CaI_2$										
	(ii)	$[CuI_4]^{2-} + [CuCl_4]^{3-} \leftrightarrows [CuCl_4]^{2-} + [CuI_4]^{3-}$	[4]									

QUESTION FIVE

- (a) (i) Reaction of Fe(CO)₅ with Na₂[Fe(CO)₄] in THF gives a salt Na₂[A] and CO. The Raman spectrum of [Et₄N]₂[A] shows absorption at 160 cm⁻¹ assigned to an unbridged Fe-Fe bond. Suggest an identity and structure for [A]²⁻
 - (ii) Explain why the metallic radii of Ru and Os are similar, whereas the value of r_{metal} for Fe is smaller than r_{metal} for Ru. [7]
- (b) Draw a reasonable structure for $[\eta^5-C_5H_5)_3Nb_3(\mu_3-CO)(CO)_6]$. [3]
- (c) Suggest what change in cluster structure might accompany the reaction: $[\text{Co}_6(\text{CO})_{15}\text{N}]^- \rightarrow [\text{Co}_6(\text{CO})_{13}\text{N}]^- + 2\text{CO}$ [5]
- (d) (i) Confirm that H₂Os₃(CO)₁₁ has sufficient valence electrons to adopt a triangular metal framework..
 - (ii) Do the modes of bonding of the CO and H ligands in (i) above affect the total valence electron count? [5]
 - (iii) Comment on the fact that H₂Os₃(CO)₁₀ also has a triangular Os₃-core.
- (e) (i) Why are the colours of Ln³⁺ ions less intense than those of the first-row transition metal ions?
 - (ii) Why are Eu²⁺ and Yb²⁺ somewhat more stable with respect to oxidation than other Ln²⁺ cations? [5]

QUESTION SIX

- (a) Suggest products for the following reactions:
 - (i) CIF + BF₃ \rightarrow
 - (ii) CsF + IF₅ \rightarrow
 - (iii) SbF₅ + ClF₅ \rightarrow
 - (iv) $Me_4NF + IF_7 \rightarrow$ [4]
- (b) Predict the structures of
 - (i) $[BrF_4]^-$ (ii) $[ICl_2]^+$ [6]
- (c) (i) Determine the ground state term symbol for Yb³⁺.
 - (ii) Calculate the g-value expected for Yb³⁺.
 - (iii) Hence, calculate the effective magnetic moment, μ_{eff} , of Yb³⁺. [5]
- (d) Identify the starting isotopes A and B in each of the following syntheses of transactionid elements:
 - transactinoid elements: (i) $A + {}^{4}_{2}He \rightarrow {}^{256}_{101}Md + {}^{1}_{0}n$ (ii) $B + {}^{16}_{8}O \rightarrow {}^{255}_{102}No + 5({}^{1}_{0}n)$ [2]
- (e) The hydrogenation of propene is catalysed by RhCl(PPh₃)₃ or HRh(CO)(PPh₃)₃. Outline the mechanism by which this reaction occurs using RhCl(PPh₃)₃, indicating clearly what the active catalyst is and explaining what is happening in each step. [8]

PERIODIC TABLE OF ELEMENTS

GROUPS

	1	-2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
	1.008											-						4.003
1	H																	He
	1																	2
	6.941	9.012									Atomi	ic mass 🗕	10.811	12.011	14.007	15.999	18.998	20.180
2	Li	Be	Symbol									▶ B	C	N	0	F	Ne	
	3	4		Atomic No.							5	6	7	8	9	10		
***************************************	22.990	24.305											26.982	28.086	30.974	32.06	35.453	39.948
3	Na	Mg				TRAN	SITION	ELEM	ENTS				Al	Si	P	S	Cl	Ar
	11	12	13 14 15 16 17										18					
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	26	′ 27	28	29	30	31	32	33	34	35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Ţc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	37	38	. 39	40°	41-	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf ·	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	- 84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)				L	*			
7	Fr	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun								
-	87	88	89	104	105	106	107	108	109	110								
1	1		l	I			1	ı	i	I	I							

*Lanthanide Series

**Actinide Series

140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	Ho 67	Er 68	Tm 69	Yb 70	Lu 71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	.91	92	93	94	95	96	97	98	99	100	101	102	103

() indicates the mass number of the isotope with the longest half-life.