UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2012/13

TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME: THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER ANY FOUR QUESTIONS.

A DATA SHEET AND A PERIODIC TABLE ARE ATTACHED
GRAPH PAPER IS PROVIDED
NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question1(25 marks)

(a) What is a half-life? Briefly explain how you can use the half-life of a reaction to distinguish between a first order and second order reaction.
(b) You are given the following data for the decomposition of acetaldehyde

Initial concentration (M)	9.72×10^{-3}	4.56×10^{-3}
Half-life (s)	328	692

(i) Determine the order of the reaction
(ii) Calculate the rate constant for the reaction
(c) Consider the schematic reaction $A \xrightarrow{k} B$
(i) If the reaction is one-half order with respect to A , what is the integrated rate law expression for this reaction?
(ii) What plot would you construct to determine the rate constant k for the reaction?
(iii) What would be the half-life? Will it depend on the initial concentration of the reactant?
(d) The rate constant for the reaction of hydrogen with iodine is $2.45 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $302^{\circ} \mathrm{C}$ and $0.950 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $508^{\circ} \mathrm{C}$.
(i) Calculate the Arrhenius parameters, i.e. the activation energy and pre-exponential factor, for this reaction.
(ii) What is the value of the rate constant at $400^{\circ} \mathrm{C}$?

Question 2 (25 marks)

(a) The quantum yield for the production of CO in the photolysis of gaseous acetone is unity for wavelengths between 250 and 320 nm . After 20 minutes of irradiation at 313 nm 18.4 cm^{3} of CO (measured at 1008 Pa and $22^{\circ} \mathrm{C}$) is produced. Calculate
(i) the number of photons absorbed
(ii) the intensity absorbed in $\mathrm{J} \mathrm{s}^{-1}$.
(b) The following reaction occurs in aqueous solution:

$$
\mathrm{I}^{-}(\mathrm{aq})+\mathrm{OCl}^{-}(\mathrm{aq}) \rightarrow \mathrm{OI}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

The initial rate was studied as a function of concentration and the following date were obtained:

Expt	$[\mathrm{T}]_{0}(\mathrm{M})$	$\left[\mathrm{OCl}_{0}(\mathrm{M})\right.$	$\left[\mathrm{OH}^{-}\right]_{0}(\mathrm{M})$	Initial rate $\left(\mathrm{M} \mathrm{s}^{-1}\right)$
1	2.0×10^{-3}	1.5×10^{-3}	1.00	1.8×10^{-4}
2	4.0×10^{-3}	1.5×10^{-3}	1.00	3.6×10^{-4}
3	2.0×10^{-3}	3.0×10^{-3}	2.00	1.8×10^{-4}
4	4.0×10^{-3}	3.0×10^{-3}	1.00	7.2×10^{-4}

(i) Determine the rate law and the value of the rate constant.
(ii) The following mechanism has been proposed for this reaction

$$
\begin{aligned}
& \left.\mathrm{OCl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HOCl}+\mathrm{OH}^{-} \text {(rate constants } \mathrm{k}_{1} \text { and } \mathrm{k}_{1}\right) \\
& \mathrm{I}^{-}+\mathrm{HOCl} \xrightarrow{k_{2}} \mathrm{HOI}+\mathrm{Cl}^{-} \\
& \mathrm{HOI}+\mathrm{OH}^{-} \xrightarrow{k_{3}} \mathrm{H}_{2} \mathrm{O}+\mathrm{OI}^{-}
\end{aligned}
$$

Derive the rate law for the formation of Cl^{-}based on this mechanism (hint: [OH] should appear in rate law). Is the rate law in agreement with the experimental rate law in determined in (i)?
(c) A likely mechanism for the photolysis of acetaldehyde is

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{h} \nu \rightarrow \mathrm{CH}_{3} \cdot+\mathrm{CHO} \cdot \\
& \mathrm{CH}_{3} \cdot+\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{k_{1}} \mathrm{CH}_{4}+\mathrm{CH}_{3} \mathrm{CO} \\
& \mathrm{CH}_{3} \mathrm{CO} \cdot \xrightarrow{k_{2}} \mathrm{CO}+\mathrm{CH}_{3} \cdot \\
& \mathrm{CH}_{3} \cdot+\mathrm{CH}_{3} \cdot \xrightarrow{k_{3}} \mathrm{C}_{2} \mathrm{H}_{6}
\end{aligned}
$$

Use steady state approximation to derive the rate law for the formation of CO based on this mechanism.

Question 3 (25 marks)

(a) Define the ionic strength of a solution. What is the molality of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ that has the same ionic strength as $0.500 \mathrm{~mol} \mathrm{~kg}{ }^{-1} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$?
(b) Devise cells in which the following are the reactions:
(i) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{aq})$
(ii) $\mathrm{Sn}(\mathrm{s})+2 \mathrm{AgCl}(\mathrm{s}) \rightarrow \mathrm{SnCl}_{2}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
(c) Derive an expression for the potential of an electrode for which the half-reaction is the reduction of MnO_{4}^{-}ions to Mn^{2+} ions in acidic solution.
(d) For the cell $\mathrm{Pt}|\mathrm{Fe}(\mathrm{s})| \mathrm{Fe}^{2+}(\mathrm{aq})\left|\mathrm{Fe}^{2+}(\mathrm{aq}), \mathrm{Fe}^{3+}(\mathrm{aq})\right| \mathrm{Pt}$, it was found that $\frac{\mathrm{dE}^{\circ}}{\mathrm{dT}}=1.14 \mathrm{mV}$ at $25^{\circ} \mathrm{C}$.
(i) Write the cell reaction using the smallest whole numbers as the stoichiometric coefficients.
(ii) Given that $\mathrm{E}^{0}\left(\mathrm{Fe}^{2+}, \mathrm{Fe}\right)=-0.44 \mathrm{~V}$ and $\mathrm{E}^{0}\left(\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}\right)=+0.771 \mathrm{~V}$, calculate $\Delta_{\mathrm{r}} \mathrm{G}^{\circ}, \Delta_{\mathrm{r}} \mathrm{S}^{\circ}, \Delta_{\mathrm{r}} \mathrm{H}^{\circ}$ for the cell reaction at $25^{\circ} \mathrm{C}$.

Question 4 (25 marks)

(a) What is the difference between a strong and a weak electrolyte? How can you distinguish them experimentally?
(b) The following molar conductivity data were obtained for an electrolyte.

Concentration $/ \mathrm{M}$	$\Lambda_{m}^{0} / \mathrm{S} \mathrm{m}^{2} \mathrm{~mol}^{-1}$
0.0005	0.01245
0.001	0.01237
0.005	0.01207
0.01	0.01185
0.02	0.01158
0.05	0.01111
0.1	0.01067

(i) Determine if the electrolyte is strong or weak.
(ii) Determine the molar conductivity of the electrolyte at infinite dilution.
(c) Use the following data to determine the molar conductivity of NaNO_{3} at infinite dilution :

$$
\begin{align*}
& \Lambda_{m}^{0}(\mathrm{KCl})=0.0149 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \\
& \Lambda_{m}^{0}(\mathrm{NaCl})=0.0127 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \\
& \Lambda_{m}^{0}\left(\mathrm{KNO}_{3}\right)=0.0145 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \tag{4}
\end{align*}
$$

(d) A standard solution of KCl of conductivity $\mathrm{K}=1.06296 \times 10^{-6} \mathrm{~S} \mathrm{~m}^{-1}$ was used to calibrate a conductivity cell and the measured resistance was 4.2156Ω. The same cell when filled with $\mathrm{HCl}(\mathrm{aq})$ the resistance was 1.0326Ω.
(i) Calculate the cell constant
(ii) What is the conductivity of the HCl solution?

Question 5 (25 marks)

(a) Discuss the unique physical and chemical properties of zeolites that make them useful heterogeneous catalysts.
(b) The data for the adsorption of ammonia on barium fluoride at 273 K are given below:

$\mathrm{p} / \mathrm{kPa}$	14.0	37.6	65.6	79.2	82.7	100.7	106.4
$\mathrm{~V} / \mathrm{cm}^{3}$	11.1	13.5	14.9	16.0	15.5	17.3	16.5

At 273 K , the vapour pressure of ammonia p^{*} is 429.6 kPa .
(i) Confirm that the data fits the BET isotherm:

$$
\begin{equation*}
\frac{V}{V_{m o n}}=\frac{c z}{(1-z)(1-(1-c) z)} \text { with } z=\frac{p}{p^{*}} \tag{7}
\end{equation*}
$$

(ii) Determine the values of c and $\mathrm{V}_{\text {mon }}$.
(c) A solid in contact with a gas at 12 kPa and $25^{\circ} \mathrm{C}$ adsorbs 2.5 mg of the gas and obeys the Langmuir isotherm, $\theta=\frac{K p}{1+K p}$. The enthalpy change when 1.0 mmol of the adsorbed gas is desorbed is +10.2 J . What is the equilibrium pressure at $40^{\circ} \mathrm{C}$?

Question 6 (25 marks)

(a) In the kinetic theory of gases, define the mean free path. Explain how the mean free path varies with (i) number density (ii) particle diameter and (iii) average speed of the molecule.
(b) Compute the root mean square speed, c , the mean speed, \bar{c}, and the most probable speed, c^{*}, for O_{2} at 300 K . How much faster will the corresponding values for H_{2} be?
(c) At what temperature is the mean speed, \bar{c}, for H_{2} equal to that of O_{2} at 300 K .
(d) The thermal conductivity of Kr is about one half that of Ar under identical pressure and temperature conditions. Both gases are monatomic such that $C_{V, m}=\frac{3}{2} R$.
(i) Why would one expect the thermal conductivity of Kr to be less that that of Ar?
(ii) Determine the ratio of the collisional cross-sections of Ar relative to Kr assuming identical pressure and temperature conditions.
(iii) For Kr at 273 K and $1 \mathrm{~atm}, \kappa=8.7 \times 10^{-3} \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$. Determine the collision cross-section of Kr .

USEFUL DATA

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+\text { cons } \tan t
$$

Arrhenius equation: $k=A e^{-E_{q} / R T}$
Coefficient of thermal conductivity $\kappa=\frac{1}{3} \frac{\lambda \bar{c} C_{V, m} N}{V}=\frac{\bar{c} C_{V, m}}{3 \sqrt{2} N_{A} \sigma}$

$$
\bar{c}=\left[\frac{8 R T}{\pi M}\right]^{1 / 2} \quad \mathrm{c}=\left[\frac{3 R T}{M}\right] \quad \mathrm{c}^{*}=\left[\frac{2 R T}{M}\right]
$$

Geueral data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	,	$1.38066 \times 10^{-23} \mathrm{JK}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\mathrm{A}} \mathrm{k}$	$8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $6.2364 \mathrm{XX} \mathrm{M}^{10} \mathrm{~L}^{2}$ Tors $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$\dagger=\mathrm{h} / 2 \pi$	$1.05457 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	$\mathrm{N}_{\text {A }}$	$6.02214 \times 10^{33} \mathrm{~mol}^{-1}$
Atomic mass unit	${ }^{\text {u }}$	$1.66054 \times 10^{27} \mathrm{Kg}$
Mass		
electron	$\mathrm{m}_{\text {e }}$	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	mp_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{0}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / c^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{\text {。 }}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ	$4 \pi \times 10^{-7} \mathrm{Js}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
		$4 \pi \times 10^{-7} \mathrm{~T}^{-2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} \uparrow / 2 \mathrm{~m}_{\text {c }}$	$9.27402 \times 10^{-24} \mathrm{JT}^{-1}$
nuclear	$\mu_{\mathrm{N}}=\mathrm{e} \dagger / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	g_{e}	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} h / m_{e} \mathrm{e}^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} \mathrm{c} / 2 \mathrm{~h}$	7.29735×10^{-3}
Rydberg constant	$\mathrm{R}_{\mathrm{s}}=\mathrm{m}_{\mathrm{e}} \mathrm{e}^{4} / 8 h^{3} \mathrm{c} \varepsilon_{0}^{2}$	$100737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67259 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$1 \mathrm{cal}=$	4.184 joules (J)	1 erg
$1 \mathrm{eV}=$	$=1.6022 \times 10^{-19} \mathrm{~J}$	$1 \mathrm{eV} /$ molecule
1 l	$=10^{-7} \mathrm{~J}$	
	$=96485 \mathrm{~kJ} \mathrm{~mol}^{-1}$	

Prefixes f p $n \quad \mu \quad \mathrm{~m} \cdot \mathrm{c} \quad \mathrm{d} \quad \mathrm{k} \quad \mathrm{M} \quad \mathrm{G}$

	n	n	m	m	c	d	k	M	G
femto	pico	nano	micro	milli	centi	deci	kilo	mega	giga
10^{-15}	10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10^{3}	10^{6}	10^{9}

() indicates the mass number of the isotope with the longest half-life.

