UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2012/13

TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME: THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER ANY FOUR QUESTIONS.

A DATA SHEET AND A PERIODIC TABLE ARE ATTACHED
GRAPH PAPER IS PROVIDED
NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

(a) Bearing in mind distinctions between the mechanism of stepwise and chain polymerization, describe ways in which it is possible to control the molar mass of a polymer by manipulating the kinetic parameters of the polymerization
(b) In an experiment to measure the quantum efficiency of a photochemical reaction, the absorbing substance was exposed to 320 nm radiation from a 87.5 W source for 28.0 minutes. The intensity of the transmitted light was 0.257 that of the incident light. As a result of irradiation 0.324 mol of the absorbing substance decomposed. Determine the quantum efficiency.
(c) The mechanism of the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$ is
(1) $\mathrm{I}_{2} \rightleftharpoons 2$ I
(2) $\mathrm{I}+\mathrm{H}_{2} \rightarrow \mathrm{HI}+\mathrm{H}$
(3) $\mathrm{H}+\mathrm{I}_{2} \rightarrow \mathrm{HI}+\mathrm{I}$

The rate constants are k_{1} and k_{1} for step (1) and k_{2} and k_{3} for steps (2) and (3), respectively. Find the rate law using the steady state approximation.
(d) The equilibrium $A \rightleftharpoons B+C\left(k_{f}\right.$ and k_{r} are the rate constants for the forward and reverse reactions respectively) is subjected to a temperature jump that slightly decreases the concentrations of B and C . The measured relaxation time is $3.0 \mu \mathrm{~s}$ and the equilibrium constant for the system is 2.0×10^{-16} at $25^{\circ} \mathrm{C}$.
(i) Show that the expression for the relaxation time is $\tau^{-1}=\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{r}}\left\{[\mathrm{B}]_{\mathrm{eq}}+[\mathrm{C}]_{e q}\right\}$.
(ii) Calculate the rate constants k_{f} and k_{r} when the equilibrium concentrations of B and C are both $2.0 \times 10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$.

Question 2(25 marks)

(a) Explain why the reaction rate of two ions with the same charge increases with increasing ionic strength where as that of ions of opposite charges decreases with increasing ionic strength.
(b) The rate of dimerizarion in aqueous solution of a cationic protein with charge $z+$ has been studied a function of ionic strength, I. The data below was obtained at $25^{\circ} \mathrm{C}$.

$\mathrm{k} / \mathrm{k}^{\circ}$	8.10	13.30	20.50	27.80	38.10	52.00
I	0.0100	0.0150	0.0200	0.0250	0.030	0.0350

Where k is the rate constant at ionic strength I and k^{0} the rate constant at zero ionic strength. Deduce the charge on the protein.
(c) The second order rate constant for the reaction for the reaction of oxygen atoms with benzene are given in the table below:

Temperature, K	300.3	392.2
Rate constant $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	1.44×10^{7}	6.9×10^{7}

(i) Determine the Arrhenius parameters (E_{a} and A) for the reaction
(ii) Determine the Eyring parameters $\Delta^{\ddagger} \mathrm{H}, \Delta^{\ddagger} \mathrm{S}$ and $\Delta^{\ddagger} \mathrm{G}$ for this reaction at 298 K .

Question 3(25 marks)

(a). Use the Debye-Huckel limiting law to estimate the mean activity coefficient of $\mathrm{La}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ in a solution that is $3.00 \times 10^{-4} \mathrm{~mol} / \mathrm{kg} \mathrm{in}^{\mathrm{La}}\left(\mathrm{SO}_{4}\right)_{3}$ and $2.00 \times 10^{-3} \mathrm{~mol} / \mathrm{kg}$ in $\mathrm{K}_{2} \mathrm{SO}_{4}$.
(b) Use the standard potentials of the couples $\mathrm{Au}^{+} / \mathrm{Au}(+1.69 \mathrm{~V}), \mathrm{Au}^{3+} / \mathrm{Au}(+1.40 \mathrm{~V})$, and $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}(+0.77 \mathrm{~V})$ to calculate E^{θ} and the equilibrium constant for the reaction

$$
\begin{equation*}
2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Au}^{3+}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Au}^{+}(\mathrm{aq}) \tag{10}
\end{equation*}
$$

(c). The standard cell potential of the cell $\mathrm{Pt}_{\mathrm{H}} \mathrm{H}_{2}(\mathrm{~g})|\mathrm{HCl}(\mathrm{aq})| \mathrm{AgCl}(\mathrm{s}) \mid \mathrm{Ag}$ is 0.223 V and $\left(\frac{\partial E^{\theta}}{\partial T}\right)_{p}=-6.5 \times 10^{-4} V K^{-1}$. The standard enthalpy of formation of $\mathrm{HCl}(\mathrm{g})$ and $\mathrm{AgCl}(\mathrm{s})$ are $-92.30 \mathrm{KJ} / \mathrm{mol}$ and $-127.03 \mathrm{~kJ} / \mathrm{mol}$, respectively. Calculate the standard enthalpy of transfer of HCl from the gas phase to the aqueous solution:
$\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{HCl}(\mathrm{aq}) \quad \Delta H^{\theta}=?$

Question 4(25 marks)

(a) Suggest explanations for the following observations, in each case write an appropriate rate equation based on the Langmuir isotherm. $\theta=\frac{K p}{1+K p}$
(i) The decomposition of phosphine on tungsten is first order at low pressures and zero order higher pressures, the activation energy being higher at the higher pressure.
(ii) On certain surfaces (e.g. Au) the hydrogen-oxygen reaction is first order in hydrogen and zero order in oxygen, with no decrease in the rate as the oxygen pressure is greatly increased.
[3]]
(b) The volume of gas at $20^{\circ} \mathrm{C}$ and 1.00 bar adsorbed on the surface of 1.50 g of a sample of silica at $0^{\circ} \mathrm{C}$ was 1.60 mL at 52.4 kPa and 2.73 mL at 104 kPa . What is the value of $V_{\text {mon }}$?
(c) The adsorption of a gas is described by the Langmuir isotherm with $\mathrm{K}=0.777 \mathrm{kPa}^{-1}$ at $25^{\circ} \mathrm{C}$. Calculate the pressure at which the fractional surface coverage is
(i) 0.20
(ii) 0.75 .
(d) The chemisorption of hydrogen on manganese is activated but only weakly so. Careful measurements have shown that it proceeds 35% faster at 1000 K than at 600 K . What is the activation energy for chemisorption?

Question 5 (25 marks)

(a) Use the kinetic theory of gases to explain the following:
(i) The thermal conductivity of a perfect gas is expected to be independent of pressure.
(ii) The thermal conductivity of a perfect gas increases as $\mathrm{T}^{1 / 2}$
(b) (i) The diffusion coefficient for Xe at 273 K and 1 atm is $5 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. What is the collisional cross section of Xe ?
(ii) The diffusion coefficient of N_{2} is threefold greater than that of Xe under the same pressure and temperature conditions. What is the collisional cross section of N_{2} ? (Atomic masses: $\mathrm{Xe}=131.29 \mathrm{u}$ and of $\mathrm{N}_{2}=28.02 \mathrm{u}$)
(c) The mobilities of $\mathrm{H}^{+}, \mathrm{Na}^{+}$and Cl^{-}are given in the table below:

Ion	Mobility, $\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}$
H^{+}	3.623×10^{-1}
Na^{+}	0.519×10^{-7}
Cl	0.791×10^{-7}

(i) What proportion of the current is carried by the protons in a $1.00 \times 10^{-3} \mathrm{M} \mathrm{HCl}(\mathrm{aq})$?
(ii) What fraction do they carry when NaCl is added to the acid so that the solution is 1.0 M in the salt?

Question 6 (25 marks)

(a) (i) State Kohlrausch's law of independent migration of ions.
(ii) The limiting molar conductivities of $\mathrm{NaI}, \mathrm{NaCH}_{3} \mathrm{CO}_{2}$, and $\mathrm{Mg}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}$ are 12.69 mS $\mathrm{m}^{2} \mathrm{~mol}^{-1}, 9.10 \mathrm{mS} \mathrm{m}^{2} \mathrm{~mol}^{-1}$ and $18.78 \mathrm{mS} \mathrm{m}^{2} \mathrm{~mol}^{-1}$, respectively (all at $25^{\circ} \mathrm{C}$). What is the limiting molar conductivity of MgI_{2} at this temperature?
(b) Given that the chemical potential of a solution of activity a is $\mu=\mu^{o}+R T \ln a$, and that the work required to move an object through a distance dx against a force F is $\mathrm{dw}=$ -Fdx, show that the thermodynamic force acting on solute particles in the solution is $F=-\frac{R T}{c} \frac{d c}{d x}$ where c is the concentration of the solution.
(c) A dilute solution of potassium permanganate in water at $25^{\circ} \mathrm{C}$ was prepared. The solution was in a horizontal tube of length 10 cm , and at first there was a linear gradation of intensity of the purple solution from left (where the concentration was 0.100 M) to the right (where the concentration was 0.05 M). What is the magnitude of the thermodynamic force acting on the solute (i) close to the left face of the container, (ii) in the middle and (iii) close to the right face? Give the force per mol in each case.
(d) A solution of LiCl (molar mass $42.39 \mathrm{~g} / \mathrm{mol}$) was electrolyzed in a Hittorf cell. After a current of 0.77 A had been passed for two hours, the mass of LiCl in the anode compartment had decreased by 0.793 g . Calculate the transport numbers of the Li^{+}and Cl^{-}ions.

USEFUL DATA

$\log \mathrm{k}=\log \mathrm{k}^{0}+2 \mathrm{~A} Z_{A} Z_{B} \sqrt{I}$ with $\mathrm{A}=0.509$ for aqueous solutions at $25^{\circ} \mathrm{C}$.
Arrhenius equation : $k=A e^{-E_{o} / R T}$
Mean free path $\lambda=\frac{k T}{\sqrt{2} o p}$
Diffusion coefficient

$$
\mathrm{D}=\frac{1}{3} \lambda \bar{c}
$$

$t_{+}^{0}=\frac{I_{+}}{I}$
$\bar{c}=\left[\frac{8 R T}{\pi M}\right]^{1 / 2} \quad \mathrm{c}=\left[\frac{3 R T}{M}\right] \quad \mathrm{c}^{*}=\left[\frac{2 R T}{M}\right] \quad \kappa=\frac{\bar{c} C_{V, m}}{3 \mathrm{~N}_{\mathrm{A}} \sqrt{2} . \sigma}$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{A} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-33} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\mathrm{A}} \mathrm{k}$	$8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-2} \mathrm{~mol}^{-1}$ $6.2364 \times 10 \mathrm{~L}^{\text {Torr }} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$\dagger=\mathrm{h} / 2 \pi$	$1.05457 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	$\mathrm{N}_{\text {A }}$	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	m e	$0.10939 \times 10^{-31} \mathrm{Kg}$
proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{n}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / c^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{0}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Js}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
		$4 \pi \times 10^{-7} \mathrm{~T}^{-2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} \hbar / 2 \mathrm{~m}_{\mathrm{c}}$	$9.27402 \times 10^{-24} \mathrm{JT}^{\text {1 }}$
nuclear	$\mu_{\mathrm{N}}=\mathrm{en} / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	ge	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{\mathrm{e}} \hbar / \mathrm{m}_{\mathrm{e}} \mathrm{e}^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} c / 2 h$	7.29735×10^{-3}
Rydberg constant	$p_{n}=m_{e} e^{4} / 8 h^{3} \varepsilon_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
Gravitational constant	$\stackrel{\text { G }}{ }$	$6.67259 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$1 \mathrm{cal}=$	4.184 joules (J)	1 erg
$1 \mathrm{eV}=$	$=1.6022 \times 10^{-19} \mathrm{~J}$	$1 \mathrm{eV} /$ molecule

Prefixes f p n $\mu \mathrm{m}$. c d $\mathrm{d} \quad \mathrm{k} \quad \mathrm{M} \quad \mathrm{G}$ $\left.\begin{array}{lllllllll}\text { fernto pico } & \text { nano } & \text { micro milli } & \text { centi } & \text { deci } & \text { kilo } & \text { mega giga } \\ 10^{-15} & 10^{-12} & 10^{-9} & 10^{-6} & 10^{-3} & 10^{-2} & 10^{-1} & 10^{3} & 10^{6}\end{array}\right) 10^{9}$

PERIODIC TABLE OF ELEMENTS

() indicates the mass number of the isotope with the longest half-life.

