UNIVERSITY OF SWAZILAND FINAL EXAMINATION 2012/13

TITLES OF PAPER :SEPARATION METHODS & ENVIRONMENTAL
ANALYTICAL TECHNIQUESCOURSE CODES :C611 & ERM642TIME ALLOWED :THREE(3) HOURSINSTRUCTIONS :ANSWER ANY FOUR(4)
QUESTIONS. EACH QUESTION
CARRIES 25 MARKS.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS PAPER

REQUIRED: GRAPH PAPER

DO NOT OPEN THIS QUESTION PAPER UNTL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

Question 1(25 marks)

- (a) For the extraction of a weak acid, HB into an organic phase, the acid being monomeric and its anion being insoluble in the organic phase, employ the basic equilibria involved to:
 - (i) Obtain the expression for the distribution ratio, D, in terms of K_a , K_{DHB} and $[H_3O^+]$. (4)
 - (ii) Show how a linearized form of the expression for D above can be used in evaluating the values of K_a and K_{DHB} graphically.
 (3)
- (b).
- (i) The distribution coefficient, K_D, of an organic compound between water and an organic solvent is18.0. If 100 mL of an aqueous solution of the compound, buffered at pH 6.00 is extracted three times with 50 mL of the organic solvent, calculate the percentage remaining in the aqueous phase.
 (K_a = 2.0 x 10⁻⁶). (7)
 (ii) What will be the value of D at pH 4? (3)

- (ii) What will be the value of D at pH 4?(iii) Comment on the results of (i) and (ii) above.
- (e) A certain metal ion M^{n+} is extracted by a chelating agent. The concentration of the chelating agent is 0.010M and the following data are obtained:

pH	1	2	3	4	5
D	10 ⁻⁸	10-4	1	10 ⁴	10 ⁸

From the plot of log D vs. pH obtain the values n and K (collection of constants)

Question 2 (25 marks)

- (a) (i). State the expression that relates the net retention volume, V_n , and the specific retention volume, V_g and define the other parameters in it. (2)
 - (ii) What are the factors that influence the value of V_g in a solvent and what assumption is made in this respect? (3)
 - (iii) Assuming an ideal behaviour, how is the net volume affected by an increase in the temperature and volatility of the solutes? (3)
 - (b). A 5.00-µL sample containing aniline (C₆H₅NH₂) and anisole (C₆H₅OCH₃) together with other substances was injected into a GC. The heights for the peaks of these two solutes in the resulting chromatogram were 4.22 (aniline) and 7.60 (anisole) chart divisions. Another 5.00-µL sample was injected together with 0.25 µL of pure aniline (all in the same syringe), producing aniline and anisole peak heights of 8.73 and 7.60 chart divisions. Calculate the concentration, in volume %, of the two components under the following assumptions:
 - (i) The detector responds equally to both compounds.

(5)

(1)

(7)

- (ii) The detector response (on a volume basis) is 1.35 times more for anisole than for aniline
 (4)
- © (i) Give the two expressions for the resolution, R_s of two adjacent peaks in a chromatogram. Account for the factors that influence its value. (4)
 - (ii) Using a 2.0 m column, what height of a theoretical plate is needed to achieve a resolution of 1.0? (Given that $\alpha = 1.05$, and k' = 0.5).

and the fact of the second second

(4).

(2)

(8)

(2)

(4)

(6)

Question 3 (25 marks)

(a) Explain the term 'band broadening' in GC analysis. (1)

- (b) With reference to the van Deemter equation, account for the contribution by each of the factors responsible for band broadening and column efficiency in terms of HETP.
 (8)
- ©. By making reference to the Van Deemter equation, predict the effect (increase, no effect, cannot determine), on the plate height, H, in each of the following conditions, with only one parameter varied at a time:
 - (i) Decreasing the particle size.
 - (ii) Increasing the column temperature.
 - (iii) Increasing the thickness of the liquid coating material.
 - (iv) Increasing the linear gas flow rate.
- (d). The analysis of n-hexane was carried out by injecting 2-µL samples unto a 3.00m GC column. The following table contains the data obtained:

 A state of the sta								
Sample	<u> </u>	2		. 4	5	. 6 .	7	8
Flow Rate	2.00	1.51	1.20	1.05	0.84	0.67	0.53	0.43
(mL/s)	e perseguire e les				•			
Retention time,	329.4	382.2	430.2	457.2	517.2	589.8	678.6	761.4
t _s (s)			4 					
Peak Width (s)	21.0	23.4	25.8	28.2	32.4	40.8	48.6	57.0

- (i) Prepare a van Deemter plot (i.e. plot HETP vs. flow rate).
- (ii) Determine the optimum flow rate
- (iii) Calculate N and H (HETP), at the optimum flow rate.

Question 4(25 marks)

- (a) For the HPLC technique, distinguish between:
- (i) Analytical and guard columns.
- (ii) Normal phase chromatography and reverse phase chromatography.
- (iii) Isocratic elution and gradient elution.

(b) Give four of the basic requirements for a HPLC pump.

(4)

- Describe two of the different kinds of pumps commonly employed in HPLC.
 What are the advantages and disadvantages of each? (9)
- (d) During the HPLC determination of the caffeine in an analgesic tablet, a 10 μL injection loop was used in preparing the caffeine standards. The following data were obtained:

[Standard],	50.0	100.0	150.0	200.0	250.0
(ppm)		- , , , , , , , , , , , , , , , , , , ,		1996 - 1997 -	· · · · · · · · · · · · · · · · · · ·
Signal(arbitrary	8354	16925	25218	33584	42002
units)	· · · · · ·		······		

A single analgesic tablet was placed in a small beaker, dissolved with 10.0 mL of methanol and the contents, including the binder, were transferred into a 25 - mL volumetric flask and diluted to level with methanol. The sample was then filtered and a 2.50 mL aliquot was transferred into another 25 - mL volumetric flask, diluted to level with methanol and analyzed similarly as the standards. A signal of 21469 was obtained for the caffeine. Estimate the amount of caffeine (in mg), in the analgesic tablet. (6)

Question 5(25 marks)

- (a) Define the following terms and discuss the factors that influence their values:
 - (i) Electrophoretic mobility.
 - (ii) Electroosmotic flow velocity.

(6)

(6)

(6)

- (b) Give a brief account of the principles of capillary zone electrophoresis(CZE).
 What is its main limitation and how is it overcome by the micelar electrokinetic chromatography(MEKC)?
 (7)
- © Discuss the efficiency and solute resolution of capillary electrophoresis, indicating the parameters that influence them.
- (d) CZE was employed for the analysis of NO₃⁻ in aquarium water, using IO₄⁻ as an internal standard. Standard solutions of 30.0 ppm NO₃⁻ and 20.0 ppm of IO₄⁻ gave peak heights (arbitrary units), of 190.0 and 200.2 respectively. A 2.50 mL water sample from an aquarium was transferred into a 250.0 mL volumetric flask and then diluted to volume after adding sufficient internal standard to make its concentration 10.00 ppm. Analysis gave signals of 29.2 and 105.8 NO₃⁻ and IO₄⁻, respectively. Estimate the concentration of NO₃⁻ in the aquarium sample in ppm.

Question 6(25 marks)

- (a) What are the advantages of supercritical fluid chromatography over GC and HPLC? (4)
- (b) Discuss the principles of size exclusion chromatography. What are the likely sources of error during the application of this technique for analysis?
 (6)
- © Distinguish gel filtration from gel permeation exclusion chromatography.

(2)

(d)

During a gel – permeation experiment, a 2.5×50 – cm Sephadex G – 200 column was used, giving the following elution data:

Compound	Molecular Wt.(M.W.)	Retention volume (mL)		
Sucrose	342	242		
Glucagon	5,500	233		
Cytochrome C	11,000	214		
Chymotripsinogen	24,000	188		
Bovine serum albumin	80,000	149		
Aldolase	153,000	127		
α – Conaractin	486,000	92		
α – Crystallin	825,000	78		
Blue dextran	2,000,000	75		
Unknown	?	119		

(i) Plot an appropriate graph from the data.

(ii) Determine the M.W. of the unknown from your plot.

- (iii) Why is the retention volume nearly independent of the M.W. at both very low and very high M.W's?
- (iv) Estimate the retention volume for an enzyme with M.W. of 39,000.
- (v) Calculate N(the number of theoretical plates), for two peaks having $R_s = 1$ and retention volumes of 200 mL and 205 mL. (13)

. •	a second			•
* ·				14 9 187
	- `			
. •	۰ ۲			
<u>.</u>	·			
	· ·			Conceldate a
	Quantity	Symbol ·	Value	General data and
×	Speed of light	C	2.997 924 58 × 10 ⁴ m s ⁻¹	fundamental
. . :	Elementary charge	ъ	1.502.177 ⁻ x 10 ⁻¹⁹ C	constants-
	Faraday constant	$F = eN_{\lambda}$	9.6485 × 10 ⁴ C mol ⁻¹	
• . •,	Boltzmann constant	k	1.380 66 × 10 ⁻²³ J K ⁻¹	• • • • • •
	Gas constant	$R = kN_{\star}$	8.31451 J K ⁻¹ mol ⁻¹	and a set of the set o
•		•	8.205 78 \times 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹	and and a second se
م ۱۹۰۰ و مقیدی			62.364 L Torr K ⁻¹ mol ⁻¹	•
•	Planck constant	h	6.626 08 × 10 ⁻³⁴ J s	
		$\dot{n} = h/2\pi$	1.054 [·] 57 × 10 ^{−34} J s	ан сайтан айтан айтан Айтан айтан айта
•	Avogadro constant	NA	6.022 14 × 10 ²³ mol ⁻¹	e de la companya de l La companya de la comp
	Atomic mass unit	u	1.660 54 × 10 ⁻²⁷ kg	
aan sense in te	Mass of	• • • • • • • • • • • • • • • • • • •		
· -	electron	m .,	9.10939×10^{-31} kg	
	proton	, m _a	1.672-62 × 10 ⁻²⁷ kg 1.674 93 × 10 ⁻²⁷ kg	2
	Neutron	m _n	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$	
	permeability†	ш <u>э</u>	$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$	-2977 -
· · ·	Vacuum permittivity	$\varepsilon_{\rm q} = 1/c^2 \mu_{\rm q}$	8.854 19 × 10 ⁻¹² J ⁻¹ C ² m ⁻¹	•
		4.7.Eq	$1.11265 \times 10^{-10} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$	
	Bohr magneton	$\mu_{\rm s} = e \hbar / 2 m_{\star}$	9.274 02 × 10 ⁻²⁴ J T ⁻¹	
	Nuclear magneton	$\mu_{H} = e f / 2 m_{p}$	5.050 79 × 10 ⁻²⁷ J T ⁻¹	
•••	Electron g value	G .	2.002 32	
	Bonr radius	$a_{\eta} = 4\pi\epsilon_{0}\hbar^{2}/m_{e}t$	5.291 77 × 10 ⁻¹¹ m	
	Rydberg constant	R . = m,*e*/8h²c:	1.097 37 × 10 ⁵ cm ⁻¹	
•	Fine structure constant	$c = \mu_0 e^2 c/2h$	7.297 35 × 10 ⁻¹	
	Gravitational constant	G	6.672 59 × 10 ⁻¹¹ N m ² kg ⁻²	
	Standard L acceleration	.g	. 9,806 65 <u>ர</u> ூ ீ	:
	of free fall†	· .		t Exact (darined) values
	fp	n µ m	c d k M G	Prefixes
	-	nano micro milli	centi deci kilo mega gio]a
		10 ⁻³ 10 ⁻⁶ 10 ⁻³	10 ⁻² 10 ⁻¹ 10 ³ 10 ⁶ 10	

PERIODIC TABLE OF ELEMENTS

GROUPS								· ·						•••				
na Mi Maria Maria di Kaburat	1	2	3	4	-5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	١٨	ΠΛ	111B	IVB .	VB	VIB	VIIB		VIIIB	•	113	HB		Ινλ	ι VΛ	VIA	VIIA	VIIIV
	1.008																	4.001
	11					· · · · · · · · · · · · · · · · · · ·							•					lle
		.0.012	1				•				Alami	c mass —)	10.911	12.011	14.007	15.999	18.998	2 20.180
	6.941 Li	9.012 Be			# :	r F		4 * s ⁻ -				nbol —	► B	C	N 14.007	0	F	Ne
		4				• • .		· .				ic No. —	S S	6	7	8	9	10
	1					· .								1		· · · · · · · · · · · · · · · · · · ·		
	22.990	24.305			•								26.982	28.086 Si	30.974 P	32.06 S	35.453 Cl	39.948
8	Na 11	Mg 12				TRAN	SITION	I ELEM	LENTS				AI 13	14	15	16	17	Ar 18
					1	r		1			letter en							
	39.098	-40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
4	IK IC	Ca	Sc	Ti	V	Cr	Mn 25	Fe 26	Co	Ni 28	Cu	Zn	Ga 31	Ge	As	Sc 34	Br 35	Kr 36
	19 19 1 105 150	20	21 88,906	22 91.224	23	24 95.94	98.907	101.07	27	106.42	<u>29</u> 107.87	30	114.82	32	33	127.60	126.90	131.29
	85.468 Rb	87.62 Sr	88.900 Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd		Cd	In 114.82	Sn	Sb	Te	120.90 T	Xe
	37	38	39	40	-41	42	43	44	45	46	Ag 47	48	49	50	51	52	53	54
n <u>n Chailte i Sa</u> n An tha	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
	Cs	Ba	*La	HI	Ta	W	Re	Os	Ir	Pt	Au	IIg	TI	Pb	Bi	Po	Λt	Rn
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
H REAK ST	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)							*	ĩ
	Fr	Rก	**Ac	Rf	Ha	Unh	Uns	Uno [§]	Une	Uun							•	
	87	88	. 89	104	105	106	107	108	109	110	j ·					*		
			• •		······					···							· · · · ·	
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97	
*[.**]	anthani	de Serie	S	Ce	. Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu 71	•
	P			58	59	60	61	62	63	64	65	66	67	68	69	70		•
*	*Actinid	e Series		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	Å
	1997년 - 281 1997년 - 281		· · · · ·	Th	Pa	U	Np	Pu	Am 95	Cm 96	Blc 97	10	Es	Fm	Md	No 102	Lr 103	2.94
			×	90	91	92	93	94	נע.	טע	91	98	99	100	101	102	105 1	