UNIVERSITY OF SWAZILAND FIRST SEMESTER EXAMINATION, 2012/2013

TITLE OF PAPER	:	THERMAL AND ELECTROANALYTICAL METHODS
COURSE CODE	:	C613
TIME ALLOWED	:	Three (3) Hours
INSTRUCTIONS	:	ANSWER ANY <u>FOUR</u> (4) QUESTIONS.
		EACH QUESTION CARRIES <u>25</u> MARKS.

A Periodic table and other useful data have been provided with this paper.

SPECIAL REQUIREMENT : GRAPH PAPER

DO NOT OPEN THIS QUESTION PAPER UNTL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

(a)	Briefl	y discuss the various types of thermogravimetric analytical methods. Identify the	;
	most	commonly used among them.	[4]
(b)			
	(i)	Summarize the basic information obtainable from a typical thermogravimetric	
		analysis?	[3]
	(ii)	In respect of the sample, what condition is required to obtain a meaningful resu	ılt,
		using a TG?	[1]
	(iii)	With the help of diagrams and relevant equations differentiate between TG and	
		DTG. What are the advantages of the later over the former?	[7]
(c)			
	(i)	Give 4 of the sample characteristics capable of influencing its TG analysis.	[2]
	(ii)	Discuss the negative affect/influence of the following a T.G analysis	
		(Use a diagram where necessary).	
		• Sample container air buoyancy.	[5]
		• Furnace convection currents and turbulence.	[3]

Question 2 (25 marks)

(a)	The thermobalance	is the a	nalytical	instrument of	during the	e TG	analysis.	For it:
L									

- i) Draw a labelled schematic diagram of a modern type.
- ii) Identify its five main components.
- iii) Give six of the features you consider desirable in the design/construction of an ideal thermobalance. [10]
- (b) To obtain accurate and reproducible thermograms, the design and operation of the thermobalance furnace are critically important. Discuss the features that should be entrenched in its design to achieve these goals.
- (c) During the analysis to confirm whether a given sample was MgO, MgCO₃ or MgC₂O₄. a 350.0 mg of the sample was subjected to a thermogravimetric analysis. The thermogram showed a loss of 182.0 mg: Given the following relevant possible reactions:

MgO	\rightarrow	No reaction
MgCO ₃	\rightarrow	$MgO + CO_2$
and		
MgC ₂ O ₄	\rightarrow	$MgO + CO_2 + CO$

Identify the compound present in the sample?

[10]

[5]

Question 3 (25 marks)

2-2-4

	 (a) Differentiate between TG (thermogravimetric Analysis), and DTA (Differential .Thermal Analysis), with respect to: .Their thermograms .Quantity measured .Instrument used 								
	Nature of sample and reference.	[4]							
(b)	Explain why atmospheric control is a more critical factor in TG than in DTA analysis.	[2]							
(c)	Discuss the effects and possible corrections of three of the factors that influence DTA thermograms.								
(d)	Identify the factors that determine the choice/nature of the following during a DTA analysis.								
	 (i) Sample holder. (ii) Temperature measuring device. 	[3]							
(d) A 28.2 mg mass loss was observed when 50.0 mg of a compound that consists of Cu(II) ammonia and chloride is subjected to TG analysis. If all the loss is ammonia, what is the formula of the sample?), [4]							
(f)	The solid lines in the figure (fig. 3.1) below depicts the simultaneous DTA and TGA								

(f) The solid lines in the figure (fig. 3.1) below depicts the simultaneous DTA and TGA thermograms of manganese hydrogen carbonate in a porous crucible:

- (i) Identify the transitions involved at each peak on the DTA trace and the products at each TG plateau.
- (ii) The broken thermogram was obtained when a controlled atmosphere with 13 atm CO_2 was used. Why is the initial oxide of Mn formed from its carbonate different?

[6]

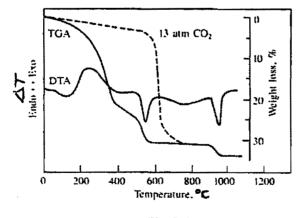


Fig 3.1

Question 4 (25marks)

(a)	and the second	
(i)) Describe the basic principles of Differential Scanning Calorimetry (DSC) [3]	
(ii)) Draw a schematic diagram of the setup of the temperature sensors and heaters in a DSC	[2]
(iii)) Differentiate DTA from DSC based on their basic principles and instrumental setup.	[3]
	umerate the functions of the following in the instrument setup of a DSC	
i)	The average temperature controller	
ii)	The differential temperature controller	[2]
(c)		
i)	Draw a labeled typical DSC curve.	[4]
ii)	What information (data) are obtainable from the DSC scan and how	
	are they obtained from the curve/scan?	[4]
iii)	Identify the structural difference between a DTA and a DSC thermogram?	[2]
~ ~	using a heating rate of 10.0 °C/min, the DSC thermogram of a polymer sample ighing 15.4 mg showed a baseline shift from 4.22 to 8.80 mCal/sec. Calculate: The change in the heat capacity of the sample.	
ii)	The new heat capacity, given that the original heat capacity was 2.73 Cal/°Cg	[6]
Juestion	5 (25 marks)	

(a) In using thermometric titration (TT) and direct injection enthalpimetry (DIE) for analysis:

- i) What parameters must be known prior to their successful application?
- ii) Discuss how relevant data are usually obtained from their respective curves/experiments. [6]

[6]

(b) For the adiabatic cell of a TT set up:

- i) Discuss its main functions
- ii) Give a typical example
- iii) How is its performance evaluated?
- iv) What physical feature of the cell enhances its performance and how?
- (c) On carrying out a thermometric titration at 25°C for the reaction:

 $M + L \leftrightarrows ML$

The data obtained are tabulated below:

Time (s)	Heat Evolved (cal.)
5.0	1.95
10.0	3.87
15.0	5.73
20.0	7.42
25.0	8.68
30.0	9.30
35.0	9.56
40.0	9.69
50.0	9.89
60.0	9.97
70.0	10.0
80.0	10.0

If the titration rate was 0.04 mL/s and the initial sample concentration for both was 0.01 M,

- i) Sketch the appropriate titration curve
- ii) Calculate the equilibrium constant, K and $\triangle G$
- iii) Identify the equivalence point and calculate the corresponding titrant volume. [13]

(Take Gas Constant, R = $1.9872 \text{ cal-}\text{K}^{-1}\text{mol}^{-1}$)

Question 6 (25 marks)

(a)	Account for the occurrence of a polarographic wave (i.e the oscillation current), in the	
	polarogram of a conventional dropping mercury electrode.	[4]

[4]

[4]

- (b) What are the effects of the following factors on both the polarographic shape and data:(i) Current maxima.
 - (ii) Presence of Oxygen. What steps are usually taken to minimize their effects?
- (c) Briefly discuss the working principles of differential pulse polarography. Account for its enhanced sensitivity over the conventional (d.c) polarography. [8]

E.

- (d) During the analysis of the oxygen level in water by the polarographic method, the limiting current for the first 2-electron oxygen reduction was 2.11 μ A. For the capillary used, m = 2.0 mgs⁻¹ and t = 5.00 s at -0.05 V. Given that the diffusion coefficient, D = 2.12 x 10⁻⁵ cm²s⁻¹. Calculate the oxygen level in the water in:
 - (i) mM (millimoles/L)
 - (ii) ppm (i.e. mg/L)

[5]

-		•											
												مەرىي بىلىراك 1 –	•
	•*	Quantity		Sym	bol		Value	-	_			General data fundamenta	
		Speed of lig	-	c			2.997 9	•				constants-	
^		Elementary charge	1	æ			1.602.1						
		Faraday constant	Ľ	F = 1	eN _a		9.6485						
		Boltzmann constant		¥			1.390 6	6×10	4 L 🗠 -	(-·		_	
		Gas consta	ant	R =	kNA		8.3145			-1		•	
						•	8-205 7			т. Т	nol ⁻¹		
							62.364	LTorr	(K ⁻¹ n	nol	•		•
•		Planck con	nstant	ከ			6.626 (-					
					<i>h</i> /2π		1.0541						
		Avogadro constan		Ni				14×10					
		Atomic m unit	255	ប			1.660	54 × 10)-27 kg	3.			•
	*	Mass of electron	n	т.	• • •	•		39 × 10					•
		proton		m,	,			62 × 10				•	
		neutron	n	m,			-1.674			-		•	
		Vacuum permea	ability†	يىڭ :	•		•	10 ⁻⁷ J :	. •	••••		•••••••	-
		1 f		-	• • -1			10 ⁻⁷ T ²		ກ ⁴ J ⁻¹ C² m	-1	· •	
		Vacuum permitt	tivity .	تو: 4 تت	= 1/c ² µ _c	٥				J ⁻¹ C ² m		·	• •
		Sohr mag	aneton		= eti/2i	m.		02 × 1			•	•	
		Nuclear magne	-	•	1 /2			79 X 1					
		Electron		g.			2.002	.32					× •
		Bohr radi	ius	3.7	$a = 4\pi \varepsilon_0 t$	h²/m"e	5.291	77 × 1	i0 ⁻³³ r	,TI			
		Rydberg consta		R	. = m, s ⁴	'/8h²c	1.097	37 × 1	0 ⁵ cm	1-1			
		Fine stru consta		c	= µoe²c,	/2h	7.297	7 35°× 1	² -0				
		Gravitati consta		G			6.572	<u>2 59 × 1</u>	ו יי-סו	N m² kg	-2		
		Standaro accele	ration	. g	-		_ 9,806	5 65 m.	s-7	-		•	
		of free	fall†		-		×	·		•		t Exect (defined) v	alues
		Ŧ	۴	n	μ	m	c	đ	k	м	G	Prefixes	
		femto	pico	nano	micro	milli	centi	deci	kilo	mega	giga		
		10-15	10-12	10-5	10-6	10-3	10-2	10-1	^ב 10	10 ⁴	10 ³	<i>.</i>	

PERIODIC TABLE OF ELEMENTS

э

	GROUPS																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
· · [١٨	IIA.	11113	IVB	VB	VIB	VIID		VIIIB		IB	1113	1117	IVA	V N	VIA	VIIA	VIIIA
	1,008																	4,003
1	11																	lle
	1																2 20.180	
	6.941	9.012									Atomic mass							
	Li	Be				••							B	C	N	0	F	Nc
	3	4				•					Atom	ic No. 🗂	5	6	7	8	9	10
	22.990	24.305											26.982	28.086	30.974	32.06	35.453	39,948
	Na	Mg				TRAN	SITION	J TEL TEN	TENTS				Al	SI	P	S	ĊI	Ar
	11	12						1 KAKALATI					13	14	15	16	17	18
~	39,098	-40.078	44.956	47.88	50.942	51,996	54.938	55.847	58.933	58.69	63.546	65.39 -	69.723	72.61	74.922	78.96	79.904	83,80
	K	Ca	Sc	Ti	Y	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30.	31	32	33	34	35	36
- -	85.468	87.62	88.906	91.224	· 92.906	95.94	98.907	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	٨g	Cd	In	Sn	Sb	Te	I	Xc
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
-[~	132.91	137.33	138.91	178.49	180.95	183,85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
	Cs	Ba	*La	III	Ta	W	Re	Os	Ir	Pt	Au	IIg	TI	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
-	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Fr	์Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun								
	87	88	89	104	105	106	107	108	109	110								
				1	Laurenagunon			L _{and} and the second		l 	1						_	
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97	
.01	 Manic	le Serie	e	Ce	, Pr	Nd	Pm	Sm	Ľu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		and LEVER	~	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
* /	ctinid	e Series		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cr	Es	Fm	Md	No	Lr	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	
				L	L				Cilia incl				l	i				

() indicates the mass number of the isotope with the longest half-life.

.

٠