UNIVERSITY OF SWAZILAND
 SUPPLEMENTARY EXAMINATION 2013/14

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I

COURSE NUMBER: C111

TIME:
THREE (3) HOURS

INSTRUCTIONS:

(i) Answer all questions in section A (total 50 marks)
(ii) Answer any 2 questions in section B (Each question is 25 marks)

Non-programmable electronic calculators may be used.

A data sheet, a periodic table and answer sheet for section A are attached

SECTION A (50 Marks)

This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all 50 questions.

1. The law of constant composition applies to \qquad (C)
(A) solutions
(B) heterogeneous mixtures
(C) compounds
(D) homogeneous mixtures
(E) solids
2. Which one of the following has the element name and symbol correctly matched?
(A) Ti , tin
(B) C, copper
(C) Mn, manganese
(D) Si , silver
(E) Sn, silicon
3. Which one of the following is not an intensive property?
(A) density
(B) temperature
(C) melting point
(D) mass
(E) boiling point
4. Precision refers to \qquad .
(A) how close a measured number is to other measured numbers
(B) how close a measured number is to the true value
(C) how close a measured number is to the calculated value
(D) how close a measured number is to zero
(E) how close a measured number is to infinity
5. A molecule of water contains hydrogen and oxygen in a $1: 8$ ratio by mass. This is a statement of
(A) the law of multiple proportions
(B) the law of constant composition
(C) the law of conservation of mass
(D) the law of conservation of energy
(E) none of the above
6. Which one of the following is not true concerning cathode rays?
(A) They originate from the negative electrode.
(B) They travel in straight lines in the absence of electric or magnetic fields.
(C) They impart a negative charge to metals exposed to them.
(D) They are made up of electrons.
(E) The characteristics of cathode rays depend on the material from which they are emitted.
7. An atom of the most common isotope of gold, ${ }^{197} \mathrm{Au}$, has \qquad protons, \qquad neutrons, and \qquad electrons.
(A) $197,79,118$
(B) $118,79,39$
(C) $79,197,197$
(D) $79,118,118$
(E) $79,118,79$
8. Isotopes are atoms that have the same number of \qquad but differing number of
\qquad .
(A) protons, electrons
(B) neutrons, protons
(C) protons, neutrons
(D) electrons, protons
(E) neutrons, electrons
9. In the symbol, ${ }_{6}^{x} C, x=$ \qquad .
(A) 19
(B) 13
(C) 6
(D) 7
(E) not enough information to determine
10. In the periodic table, the elements are arranged in \qquad .
(A) alphabetical order
(B) order of increasing atomic number
(C) order of increasing metallic properties
(D) order of increasing neutron content
(E) reverse alphabetical order
11. Which pair of elements would you expect to exhibit the greatest similarity in their physical and chemical properties?
(A) O, S
(B) C, N
(C) K, Ca
(D) H, He
(E) Si, P
12. Which pair of elements is most apt to form an ionic compound with each other?
(A) barium, bromine
(B) calcium, sodium
(D) sulphur, fluorine
(E) nitrogen, hydrogen
(C) oxygen, fluorine
13. Which species below is the sulphite ion?
(A) $\mathrm{HSO}_{3}^{-2}(\mathrm{~B}) \mathrm{SO}_{3}^{-2}$
(C) S^{2-}
(D) SO_{4}^{-2}
(E) HS^{-}
14. Aluminium reacts with a certain non-metallic element to form a compound with the general formula $\mathrm{Al}_{2} \mathrm{X}_{3}$. Element X must be from Group \qquad of the Periodic Table of Elements.
(A) 13
(B) 14
(C) 15
(D) 16
(E) 17
15. Which one of the following compounds is copper(I) chloride?
(A) CuCl
(B) CuCl_{2}
(C) $\mathrm{Cu}_{2} \mathrm{Cl}$
(D) $\mathrm{Cu}_{2} \mathrm{Cl}_{3}$
(E) $\mathrm{Cu}_{3} \mathrm{Cl}_{2}$
16. The correct name for NaHCO_{3} is \qquad .
(A) sodium hydride
(B) persodium carbonate
(C) persodium hydroxide
(D) sodium hydrogen carbonate
(E) carbonic acid
17. When the following equation is balanced, the coefficients are \qquad .
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$
(A) $1,1,1,1$
(B) $4,7,4,6$
(C) $2,3,2,3$
(D) $1,3,1,2$
(E) $4,3,4,3$
18. The formula weight of potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ is \qquad u.
(A) 107.09
(B) 255.08
(C) 242.18
(D) 294.18
(E) 333.08
19. What is the mass \% of carbon in dimethylsulfoxide $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}\right)$ rounded to three significant figures?
(A) 60.0
(B) 20.6
(C) 30.7
(D) 7.74
(E) 79.8
20. One million argon atoms is \qquad mol (rounded to two significant figures) of argon atoms.
(A) 3.0
(B) 1.7×10^{-18}
(C) 6.0×10^{23}
(D) 1.0×10^{-6}
(E) $1.0 \times 10^{+6}$
21. A sample of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ with a mass of 19 g contains \qquad atoms of F .
(A) 2.2×10^{23}
(B) 38
(C) 3.3×10^{24}
(D) 4.4×10^{23}
(E) 9.5
22. How many sulphur dioxide molecules are there in 1.80 mol of sulphur dioxide?
(A) 1.08×10^{23}
(B) 6.02×10^{24}
(C) 1.80×10^{24}
(D) 1.08×10^{24}
(E) 6.02×10^{23}
23. Which of the following is soluble in water at $25^{\circ} \mathrm{C}$?
(A) $\mathrm{Fe}_{3}(\mathrm{PO} 4)_{2}$
(B) $\mathrm{Fe}(\mathrm{OH})_{2}$
(C) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$
(D) FeCO_{3}
(E) FeS
24. Which combination will produce a precipitate?
(A) $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$
(B) $\mathrm{AgNO}_{3}(\mathrm{aq})$ and $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq})$
(C) $\mathrm{NaOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$
(D) $\mathrm{NaCl}(\mathrm{aq})$ and $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
(E) $\mathrm{NaOH}(\mathrm{aq})$ and $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
25. The net ionic equation for the reaction between aqueous sulphuric acid and aqueous sodium hydroxide is \qquad .
(A) $\mathrm{H}^{+}(\mathrm{aq})+\overline{\mathrm{HSO}_{4}^{-}(\mathrm{aq})}+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
(B) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
(C) $\mathrm{SO}_{4}{ }^{2-}$ (aq) $+2 \mathrm{Na}^{+}($aq $) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
(D) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(E) $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
26. Which hydroxides are weak bases?
(A) $\mathrm{KOH}, \mathrm{Ba}(\mathrm{OH})_{2}$
(B) $\mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{KOH}, \mathrm{NaOH}, \mathrm{Ba}(\mathrm{OH})_{2}$
(C) $\mathrm{KOH}, \mathrm{NaOH}$
(D) $\mathrm{KOH}, \mathrm{NaOH}, \mathrm{Ba}(\mathrm{OH})_{2}$
(E) None of these is a weak base.
27. The balanced reaction between aqueous nitric acid and aqueous strontium hydroxide is
(A) $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
(B) $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
(C) $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{SrOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SrNO}_{3}(\mathrm{aq})$
(D) $2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
(E) $2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2}(\mathrm{~g})$
28. In which reaction does the oxidation number of hydrogen change?
(A) $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(B) $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
(C) $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$
(D) $2 \mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
(E) $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$
29. In which species does sulphur have the highest oxidation number?
(A) S_{8} (elemental form of sulphur)
(B) $\mathrm{H}_{2} \mathrm{~S}$
(C) SO_{2}
(D) $\mathrm{H}_{2} \mathrm{SO}_{3}$
(E) $\mathrm{K}_{2} \mathrm{SO}_{4}$
30. Which one of the following is not true concerning 2.00 L of 0.100 M solution of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
(A) This solution contains 0.200 mol of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.
(B) This solution contains 0.800 mol of oxygen atoms.
(C) 1.00 L of this solution is required to furnish 0.300 mol of Ca^{2+} ions.
(D) There are 6.02×10^{22} phosphorus atoms in 500.0 mL of this solution.
(E) This solution contains 0.600 mol of Ca^{2+}.
31. Which solution contains the largest number of moles of chloride ions?
(A) 10.0 mL of $0.500 \mathrm{M} \mathrm{BaCl}_{2}$
(B) 4.00 mL of 1.000 M NaCl
(C) 7.50 mL of 0.500 M FeCl 3
(D) 25.00 mL of 0.400 M KCl
(E) 30.00 mL of $0.100 \mathrm{M} \mathrm{CaCl}_{2}$
32. What is the frequency $\left(\mathrm{s}^{-1}\right)$ of electromagnetic radiation that has a wavelength of 0.53 m ?
(A) 5.7×10^{8}
(B) 1.8×10^{-9}
(C) 1.6×10^{8}
(D) 1.3×10^{-33}
(E) 1.3×10^{33}
33. The wavelength of a photon that has an energy of $5.25 \times 10^{-19} \mathrm{~J}$ is \qquad m.
(A) 3.79×10^{-7}
(B) 2.64×10^{6}
(C) 2.38×10^{23}
(D) $4.21 \times \overline{10^{-24}}$
(E) 3.79×10^{7}
34. The frequency of electromagnetic radiation required to promote an electron from $n=2$ to $n=$ 4 in a hydrogen atom is \qquad Hz.
(A) 4.13×10^{-19}
(B) 6.17×10^{14}
(C) 5.46×10^{-19}
(D) 8.22×10^{14}
(E) 4.13×10^{19}
35. At what speed (m / s) must a $3.0-\mathrm{mg}$ object be moving in order to have a de Broglie wavelength of $5.4 \times 10^{-29} \mathrm{~m}$?
(A) 1.6×10^{-28}
(B) 3.9×10^{-4}
(C) 2.0×10^{12}
(D) 4.1
(E) 6.3
36. The \qquad subshell contains only one orbital.
(A) 5 d
(B) 6 f
(C) 4 s
(D) 3 d
(E) $1 p$
37. The total number of orbitals in a shell is given by \qquad .
(A) l^{2}
(B) n^{2}
(C) 2 n
(D) $2 n+1$
(E) $2 l+1$
38. Each p-subshell can accommodate a maximum of \qquad electrons.
(A) 6
(B) 2
(C) 10
(D) 3
(E) 5
39. $[\mathrm{Ne}] 3 s^{2} 3 \mathrm{p}^{3}$ is the electron configuration of $\mathrm{a}(\mathrm{n})$ \qquad atom.
(A) As
(B) V
(C) P
(D) Sb
(E) Sn
40. The ground state electron configuration for Zn is \qquad .
(A) $[\mathrm{Kr}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10}$
(B) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10}$
(C) $[A r] 4 s^{1} 3 \mathrm{~d}^{10}$
(D) $[\mathrm{Ar}] 3 \mathrm{~s}^{2} 3 \mathrm{~d}^{10}$
(E) $[\mathrm{Kr}] 3 \mathrm{~s}^{2} 3 \mathrm{~d}^{10}$
41. Elements in group \qquad have a $n p^{6}$ electron configuration in the outer shell.
(A) 14
(B) 16
(C) 17
(D) 18
(E) 15
42. In which set of elements would all members be expected to have very similar chemical properties?
(A) P, Se, I
(B) $\mathrm{Cl}, \mathrm{Br}, \mathrm{Na}$
(C) $\mathrm{Si}, \mathrm{As}, \mathrm{Te}$
(D) $\mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}$
(E) $\mathrm{Br}, \mathrm{I}, \mathrm{At}$
43. Screening of the nuclear charge by core electrons in atoms is \qquad .
(A) less efficient than that by valence electrons
(B) more efficient than that by valence electrons
(C) essentially identical to that by valence electrons
(D) responsible for a general decrease in atomic radius going down a group
(E) both essentially identical to that by valence electrons and responsible for a general decrease in atomic radius going down a group
44. Atomic radius generally increases as we move \qquad .
(A) down a group and from right to left across a period
(B) up a group and from left to right across a period
(C) down a group and from left to right across a period
(D) up a group and from right to left across a period
(E) down a group; the period position has no effect
45. \qquad is isoelectronic with argon and \qquad is isoelectronic with neon.
(A) $\mathrm{Cl}^{-}, \mathrm{F}^{-}$
(B) $\mathrm{Cl}^{-}, \mathrm{Cl}^{+}$
(C) $\mathrm{F}^{+}, \mathrm{F}^{-}$
(D) $\mathrm{Ne}^{-}, \mathrm{Kr}^{+}$
(E) $\mathrm{Ne}-, \mathrm{Ar}^{+}$
46. \qquad have the lowest first ionization energies of the groups listed.
(A) Alkali metals
(B) Transition elements
(C) Halogens
(D) Alkaline earth metals
(E) Noble gases
47. Which equation correctly represents the first ionization of phosphorus?
(A) $\mathrm{P}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{P}^{-}(\mathrm{g})$
(B) $\mathrm{P}(\mathrm{g}) \rightarrow \mathrm{P}^{-}(\mathrm{g})+\mathrm{e}^{-}$
(C) $P(g) \rightarrow P^{+}(g)+e^{-}$
(D) $P^{-}(g) \rightarrow P(g)+e^{-}$
(E) $\mathrm{P}^{+}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{P}(\mathrm{g})$
48. Of the following species, \qquad has the largest radius.
(A) Rb^{+}
(B) Sr^{2+}
(C) Br^{-}
(D) Kr
(E) Ar
49. The central atom in \qquad does not violate the octet rule.
(A) SF_{4}
(B) KrF_{2}
(C) CF_{4}
(D) XeF_{4}
(E) ICl_{4}^{-}
50. What is the maximum number of double bonds that a hydrogen atom can form?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Please insert your answer sheet inside the answer book used for section B.

SECTION B (50 Marks)

There are three questions in this section. Each question is worth 25 marks. Answer any two questions. In all calculations answers must have the correct number of significant figures and correct units.

Question 1 (25 marks)

(a) Draw Lewis structures of the following species and use VSEPR theory to predict their shapes; $\mathrm{SO}_{2}, \mathrm{SO}_{3}$ and SeF_{4}.
(b) Draw the Lewis structure of $\mathrm{NO}_{2}, \mathrm{NO}_{2}{ }^{+}$, and $\mathrm{NO}_{2}{ }^{-}$. In each case calculate the formal charge on the central N atom.
(c) Determine whether the following molecules are polar or non-polar: $\mathrm{AsH}_{3}, \mathrm{SF}_{6}, \mathrm{HI}$, [7]

Question 2 (25 marks)

(a) Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ reacts with oxygen in the air to produce carbon dioxide and water. In a particular experiment, 38.0 grams of carbon dioxide are produced from the reaction of 22.05 grams of propane with excess oxygen. What is the $\%$ yield in this reaction? [9]
(b) What is the empirical formula of a compound that contains $29 \% \mathrm{Na}, 41 \% \mathrm{~S}$, and $30 \% \mathrm{O}$ by mass?
(c) Combustion of a $0.9835-\mathrm{g}$ sample of a compound containing only carbon, hydrogen, and oxygen produced 1.900 g of CO_{2} and 1.070 g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the compound?

Question 3 (25 marks)

(a) Write the molecular and the net ionic equation for the formation of an aqueous solution of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ when solid $\mathrm{Al}(\mathrm{OH})_{3}$ is mixed with aqueous nitric acid.
(b) Suggest two aqueous solutions that can be used to prepare zinc sulphide. Write the net ionic equation for the precipitation reaction.
(c) What mass (g) of CaF_{2} is formed when 47.8 mL of 0.334 M NaF is treated with an excess of aqueous calcium nitrate?
(d) An aliquot (28.7 mL) of a KOH solution required 31.3 mL of 0.118 M HCl for neutralization. What mass (g) of KOH was in the original sample?
(e) A solution is prepared by adding 1.60 g of solid NaCl to 50.0 mL of $0.100 \mathrm{M} \mathrm{CaCl}_{2}$. What is the molarity of chloride ion in the final solution? Assume that the volume of the final solution is 50.0 mL .

General data and fundamental constants

PERIODIC TABLE OF ELEMENTS

GROUPS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Preriods	IA	IIA	IIIB	IVB	VB	VIB	VIIB	VIIIB			IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	$\begin{gathered} 1.008 \\ 11 \\ 1 \\ \hline \end{gathered}$.	$\begin{gathered} 4.003 \\ 11 \mathrm{e} \\ 2 \end{gathered}$
2	$\begin{gathered} 6.941 \\ \mathrm{Li} \\ 3 \end{gathered}$	9.012 Be 4	(RANSITION ELEMENTS $\begin{gathered}\text { Atomic mass } \\ \text { Symbol } \\ \text { Atomic No. } \\ \text { TRA }\end{gathered}$											$\begin{gathered} 12.011 \\ C \\ 6 \end{gathered}$	$\begin{gathered} 14.007 \\ \mathrm{~N} \\ 7 \end{gathered}$	$\begin{gathered} 15.999 \\ 0 \\ 8 \end{gathered}$	$\begin{gathered} 18.998 \\ F \\ 9 \end{gathered}$	$\begin{gathered} 20.180 \\ \mathrm{Ne} \\ 10 \end{gathered}$
3	$\begin{gathered} 22.990 \\ \mathrm{Na} \\ 11 \end{gathered}$	$\begin{gathered} 24.305 \\ \mathrm{Mg} \\ 12 \end{gathered}$											$\begin{gathered} 26.982 \\ \text { AI } \\ 13 \end{gathered}$	$\begin{gathered} 28.086 \\ \mathrm{Si} \\ 14 \end{gathered}$	$\begin{gathered} 30.974 \\ \mathrm{P} \\ 15 \end{gathered}$	$\begin{gathered} 32.06 \\ S \\ 16 \end{gathered}$	$\begin{gathered} 35.453 \\ \mathrm{Cl} \\ 17 \end{gathered}$	$\begin{gathered} 39.948 \\ \mathrm{Ar} \\ 18 \end{gathered}$
4	$\begin{gathered} 39.098 \\ \text { K } \\ 19 \\ \hline \end{gathered}$	$\begin{gathered} 40.078 \\ \mathrm{Ca} \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 44.956 \\ \mathrm{Sc} \\ 21 \\ \hline \end{gathered}$	$\begin{gathered} 47.88 \\ \mathrm{Ti} \\ 22 \\ \hline \end{gathered}$	$\begin{gathered} 50.942 \\ \mathrm{Y} \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} 51.996 \\ \mathrm{Cr} \\ 24 \\ \hline \end{gathered}$	$\begin{gathered} 54.938 \\ \mathrm{Mn} \\ 25 \\ \hline \end{gathered}$	55.847 Fe 26	$\begin{gathered} 58.933 \\ \mathrm{Co} \\ 27 \\ \hline \end{gathered}$	$\begin{gathered} 58.69 \\ \mathrm{Ni} \\ 28 \\ \hline \end{gathered}$	$\begin{gathered} 63.546 \\ \mathrm{Cu} \\ 29 \end{gathered}$	$\begin{gathered} 65.39 \\ \mathbf{Z n} \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 69.723 \\ \mathrm{Ga} \\ 31 \\ \hline \end{gathered}$	$\begin{gathered} 72.61 \\ \mathbf{G e} \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} 74.922 \\ \text { As } \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 78.96 \\ \mathrm{Se} \\ 34 \\ \hline \end{gathered}$	$\begin{gathered} 79.904 \\ \mathrm{Br} \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 83.80 \\ \mathrm{Kr} \\ 36 \\ \hline \end{gathered}$
5	$\begin{gathered} 85.468 \\ \mathrm{Rb} \\ 37 \\ \hline \end{gathered}$	$\begin{gathered} 87.62 \\ \mathrm{Sr} \\ 38 \\ \hline \end{gathered}$	$\begin{gathered} 88.906 \\ Y \\ 39 \\ \hline \end{gathered}$	$\begin{gathered} 91.224 \\ \mathrm{Zr} \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 92.906 \\ \mathrm{Nb} \\ 41 \\ \hline \end{gathered}$	$\begin{gathered} 95.94 \\ \text { Mo } \\ 42 \\ \hline \end{gathered}$	$\begin{gathered} 98.907 \\ \mathrm{Tc} \\ 43 \\ \hline \end{gathered}$	$\begin{gathered} 101: 07 \\ \mathrm{Ru} \\ 44 \\ \hline \end{gathered}$	$\begin{gathered} 102.9 .1 \\ \mathrm{Rh} \\ 45 \\ \hline \end{gathered}$	$\begin{gathered} 106.42 \\ \text { Pd } \\ 46 \\ \hline \end{gathered}$	$\begin{gathered} 107.87 \\ \mathrm{Ag} \\ 47 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 112.41 \\ \mathrm{Cd} \\ 48 \\ \hline \end{array}$	$\begin{gathered} 114.82 \\ \text { In } \\ 49 \\ \hline \end{gathered}$	$\begin{gathered} 118.71 \\ \mathrm{Sn} \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 121.75 \\ \mathrm{Sb} \\ 51 \\ \hline \end{gathered}$	$\begin{gathered} 127.60 \\ \mathrm{Te} \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} 126.90 \\ 1 \\ 53 \\ \hline \end{gathered}$	$\begin{gathered} 131.29 \\ \mathrm{Xe} \\ 54 \\ \hline \end{gathered}$
6	132.91 Cs 55	137.33 Ba 56	$\begin{gathered} 138.91 \\ * \mathrm{La} \\ 57 \\ \hline \end{gathered}$	$\begin{gathered} 178.49 \\ \text { Hf } \\ 72 \\ \hline \end{gathered}$	$\begin{gathered} 180.95 \\ \mathrm{Ta} \\ 73 \\ \hline \end{gathered}$	$\begin{gathered} 183.85 \\ W \\ 74 \\ \hline \end{gathered}$	$\begin{gathered} 186.21 \\ \mathrm{Re} \\ 75 \\ \hline \end{gathered}$	$\begin{gathered} 190.2 \\ \text { Os } \\ 76 \\ \hline \end{gathered}$	$\begin{gathered} 192.22 \\ \mathrm{Ir} \\ 77 \\ \hline \end{gathered}$	$\begin{gathered} 195.08 \\ \mathrm{Pt} \\ 78 \\ \hline \end{gathered}$	$\begin{gathered} 196.97 \\ A u \\ 79 \\ \hline \end{gathered}$	$\begin{gathered} 200.59 \\ \mathrm{Hg} \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 204.38 \\ \mathrm{Tl} \\ 81 \\ \hline \end{gathered}$	$\begin{gathered} 207.2 \\ \mathrm{~Pb} \\ 82 \end{gathered}$	$\begin{gathered} 208.98 \\ \mathrm{Bi} \\ 83 \\ \hline \end{gathered}$	$\begin{gathered} \hline(209) \\ \text { Po } \\ 84 \\ \hline \end{gathered}$	(210) At 85	$\begin{gathered} (222) \\ \mathrm{Rn}^{2} \\ 86 \\ \hline \end{gathered}$
7	$\begin{gathered} 223 \\ \mathrm{Fr} \\ 87 \end{gathered}$	$\begin{gathered} 226.03 \\ \mathrm{Ra} \\ 88 \end{gathered}$	$\begin{gathered} (227) \\ * * \mathrm{Ac} \\ 89 \end{gathered}$	$\begin{gathered} (261) \\ \text { Rf } \\ 104 \end{gathered}$	$\begin{gathered} (262) \\ \mathrm{Ha} \\ 105 \end{gathered}$	$\begin{gathered} (263) \\ \text { Unh } \\ 106 \end{gathered}$	$\begin{gathered} (262) \\ \text { Uns } \\ 107 . \end{gathered}$	$\begin{gathered} (265) \\ \text { Uno } \\ \text { 108 } \end{gathered}$	$\begin{gathered} (266) \\ \text { Une } \\ 109 \end{gathered}$	$\begin{aligned} & (267) \\ & \text { Uun } \\ & 110 \end{aligned}$.					.	\because

*Lanthanide Scrics
**Actinide Scrics

140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Cc	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

() indicates the mass number of the isotope with the longest half-life.

C111 SECTION A ANSWER SHEET

STUDENT ID NUMBER: \qquad

Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

1	A	B	C	D	E	26	A	B	C	D	E
2	A	B	C	D	E	27	A	B	C	D	E
3	A	B	C	D	E	28	A	B	C	D	E
4	A	B	C	D	E	29	A	B	C	D	E
5	A	B	C	D	E	30	A	B	C	D	E
6	A	B	C	D	E	31	A	B	C	D	E
7	A	B	C	D	E	32	A	B	C	D	E
8	A	B	C	D	E	33	A	B	C	D	E
9	A	B	C	D	E	34	A	B	C	D	E
10	A	B	C	D	E	35	A	B	C	D	E
11	A	B	C	D	E	36	A	B	C	D	E
12	A	B	C	D	E	37	A	B	C	D	E
13	A	B	C	D	E	38	A	B	C	D	E
14	A	B	C	D	E	39	A	B	C	D	E
15	A	B	C	D	E	40	A	B	C	D	E
16	A	B	C	D	E	41	A	B	C	D	E
17	A	B	C	D	E	42	A	B	C	D	E
18	A	B	C	D	E	43	A	B	C	D	E
19	A	B	C	D	E	44	A	B	C	D	E
20	A	B	C	D	E	45	A	B	C	D	E
21	A	B	C	D	E	46	A	B	C	D	E
22	A	B	C	D	E	47	A	B	C	D	E
23	A	B	C	D	E	48	A	B	C	D	E
24	A	B	C	D	E	49	A	B	C	D	E
25	A	B	C	D	E	50	A	B	C	D	E

