UNIVERSITY OF SWAZILAND

Ì

SUPPLEMENTARY EXAMINATION - 2014, MAY

TITLE OF PAPE	R		:	Introductory Ch	nemistry	II
COURSE NUM	BER		:	C112		
TIME			:	Three Hours		
INSTRUCTION	S		:			
	1.	Answer al	l questi	ons in Section A	(Total 5	0 marks)
	2.	Answer ar	ny two e	questions in Sec	tion B (e	ach question is 25 marks)
NB:	No	n-program	mable e	electronic calcula	ators may	y be used
	A d	ata sheet,	a perio	dic table and ans	swer she	et (for Section A) are attached
Useful	dat 1 a	a and equ a tm = 760 T	ations: orr = 76	60 mmHg		
	1 a	tm = 10132	25 Pa			
	Arr	henius equ	uation: I	$k = Ae^{-E_a/RT}$	or	$lnk = lnA - \frac{E_a}{RT}$
	Va	n der Walls	equati	on:	$P = \frac{nRT}{V-n}$	$\frac{1}{b} - \frac{n^2 a}{v^2}$

This Examination Paper Contains Twelve Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been granted by the Chief Invigilator. 1. At 27°C, K_p = 0.095 for the equilibrium:

 $NH_4HS(s) \longrightarrow NH_3(g) + H_2S(g)$

A sample of solid NH₄HS is placed in a closed vessel and allowed to equilibrate. Calculate the equilibrium partial pressure (atm) of ammonia, assuming that some solid NH₄HS remains.

A) 0.31 B) 0.095 C) 0.052 D) 0.0049

E) 3.8

2. Consider the following chemical reaction:

 $H_2(g) + I_2(g) \longrightarrow 2HI(g)$

At equilibrium in a particular experiment, the concentrations of H₂, I₂, and HI were 0.25 M, 0.035 M, and 0.55 M, respectively. The value of K_{eq} for this reaction is ______.

- A) 23
- B) 63
- C) 0.0090
- D) 5.1
- E) 34

3. Which one of the following is true concerning the Haber process?

A) It is a process used for shifting equilibrium positions to the right for more

- economical chemical synthesis of a variety of substances.
- B) It is a process used for the synthesis of ammonia.
- C) It is another way of stating Le Châtelier's principle.
- D) It is an industrial synthesis of sodium chloride that was discovered by Karl Haber.
- E) It is a process for the synthesis of elemental chlorine.

4. If 30.0 L of oxygen are cooled from 200°C to 1°C at constant pressure, what is the new

volume of oxygen?

- A. 0.150 L
- B. 17.4 L
- C. 23.0 L
- D. 51.8 L
- $E. 6.00 \times 10^{3} L$
- 5. If the pressure of a gas sample is quadrupled and the absolute temperature is doubled, by what factor does the volume of the sample change?
 - A. 8 B. 2 C. 1/2 D. 1/4 E. 1/8
- 6. If the pressure on a gas sample is tripled and the absolute temperature is quadrupled, by what factor will the volume of the sample change?
 - A. 12

- B. 4/3 C. 3/4 D. 1/3 E. 4
- The temperature of an ideal gas in a 5.00 L container originally at 1 atm pressure and 25°C is lowered to 220 K. Calculate the new pressure of the gas.
 - A. 1.0 atm
 - B. 1.35 atm
 - C. 8.8 atm
 - D. 0.738 atm
 - E. 0.114 atm
- At what temperature will a fixed amount of gas with a volume of 175 L at 15°C and 760 mmHg occupy a volume of 198 L at a pressure of 640 mm Hg?
 - A. 274°C
 - B. 214°C
 - C. 114°C
 - D. 1°C
 - È. -59°C
- 9. Calculate the volume occupied by 35.2 g of methane gas (CH4) at 25°C and 1.0 atm.
 - R = 0.0821 L atm/K mol.
 - A. 0.0186 L
 - B. 4.5 L
 - C. 11.2 L
 - D. 49.2 L
 - E. 53.7 L

10. Calculate the volume occupied by 25.2 g of CO2 at 0.84 atm and 25°C.

- A. 0.060 L
- B. 1.34 L
- C. 16.9 L
- D. 24.2 L
- E. 734 L

12. How many molecules of N_2 gas can be present in a 2.5 L flask at 50°C and 650 mmHg?

- A. $2.1 \times 10-23$ molecules
- B. 4.9 × 1022 molecules

- C. 3.1 × 1023 molecules
- D. 3.6 × 1025 molecules
- E. 0.081 molecules
- 13. A calorimeter temperature increases by 0.45 °C when 30 J of energy is added to it by electrical heating. When 0.10 grams of HCl is neutralized in the same calorimeter, the temperature increased by 7.3 °C. What is the ΔH of neutralization of HCl in units of kJ/mol?
 - a) -177 kJ/mol b) 0.486 kJ/mol c) 1.8 x 10² kJ/mol d) -486 kJ/mol e) 177 kJ/mol
- 14. Given that:

$$\begin{split} S(s) + O_2(g) &\longrightarrow SO_2(g); \Delta H = -296.8 \text{ kJ/mol} \\ 2 \text{ SO}_3(g) &\longrightarrow 2 \text{ SO}_2(g) + O_2(g); \Delta H = +197.8 \text{ kJ/mol} \\ \text{Determine the enthalpy change of the reaction: } 2 \text{ S}(s) + 3 \text{ O}_2(g) --> 2 \text{ SO}_3(g) \end{split}$$

- a) -99 kJ/mol
- b) 99 kJ/mol
- c) 495 kJ/mol
- d) -495 kJ/mol
- e) -791.4 kJ/mol
- 15. At elevated temperatures, dinitrogen pentoxide decomposes to nitrogen dioxide and oxygen:

 $2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$

When the rate of formation of O₂ is 2.2×10^{-4} M/s, the rate of decomposition of N₂O₅ is _____ M/s.

- A) 1.1 × 10⁻⁴ B) 2.2 × 10⁻⁴ C) 2.8 × 10⁻⁴ D) 4.4 × 10⁻⁴ E) 5.5 × 10⁻⁴
- 16. How many isomers are possible for C_5H_{12} ?
 - A) 1
 - B) 2
 - C) 3
 - D) 4
 - E) 10

17. Which statement about addition reactions between alkenes and HBr is <u>false</u>?

A) The addition occurs at the double bond.

B) Bromine attacks the alkene carbon atom possessing a partial positive charge.

- C) A hydrogen atom attaches to the alkene carbon atom possessing a partial negative charge.
- D) The π bond breaks in the course of the reaction.

.

- E) The proposed mechanism involves radicals.
- 18. The simplest alkyne is _
 - A) ethylene
 - B) ethane
 - C) ethyne
 - D) propyne
 - E) benzene
- 19. The minimum number of carbons necessary for a hydrocarbon to form a branched structure
 - A) 4

is_

- B) 6
- C) 3
- D) 9
- 015
- E) 12
- 20. The general formula of an alkane is ______.
 - A) C_{2n}H_{2n+2}
 - B) C_nH_{2n}
 - C) C_nH_{2n+2}
 - D) C_nH_{2n-2}
 - E) C_nH_n
 - -/ -1/-1/
- 21. The compound below is an _____. H-C=CH-CH₃
 - - A) alkyne B) alkene
 - C) alkane
 - D) aromatic compound
 - E) olefin
- 22. What is the name of the compound below?

$$\begin{array}{cccc} H & H \\ | & | \\ H_3C & \hline C & \hline C & \hline C & \hline C & C = CH_2 \\ | & | & | \\ H_3C & H & CH_3 \end{array}$$

- A) 2,4-methylbutene
- B) 2,5-dimethylpentane
- C) 2,4-ethylbutene
- D) 2,4-dimethyl-1-pentene
- E) 2,4-dimethyl-4-pentene
- 23. The compound below is a(n) ____

- A) carboxylic acid
- B) ketone
- C) aldehyde
- D) ester
- E) amine

- 24. Which statement about hydrocarbons is false?
 - A) The smallest alkane to have structural (constitutional) isomers has 4 carbon atoms.
 - B) Cyclic alkanes are structural isomers of alkenes.
 - C) Alkanes are more reactive than alkenes.
 - D) Alkanes can be produced by hydrogenating alkenes.
 - E) Alkenes can be polymerized.
- 25. At equilibrium, ____
 - A) All chemical reactions have ceased
 - B) The rates of the forward and reverse reactions are equal
 - C) The rate constants of the forward and reverse reactions are equal
 - D) The value of the equilibrium constant is 1
 - E) The limiting reagent has been consumed
- 26. Which one of the following is an endothermic process?
 - A) Ice melting
 - B) Water freezing
 - C) Boiling soup
 - D) Hydrochloric acid and barium hydroxide are mixed at 25 °C: the temperature increases.
 - E) Both A and C
- 27. Gaseous mixtures _
 - A) Can only contain molecules
 - B) Are all heterogeneous
 - C) Can only contain isolated atoms
 - D) Are all homogeneous
 - E) Must contain both isolated atoms and molecules
- 28. Which of the following expressions is the correct equilibrium-constant expression for the following reaction?

A)
$$\frac{[CH_3OH]}{[CO_2]}$$

- $B) \qquad \frac{[CH_3OH]}{[CO_2][H_2]}$
- $C) \qquad \frac{\left[CO_2\right]\left[H_2\right]^2}{\left[CH_3OH\right]}$

$$D) \qquad \frac{[CO_2][H_2]}{[CH,OH]}$$

$$E) \qquad \frac{[CH_3OH]}{[CH_3OH]}$$

$$= \frac{1}{\left[\text{CO}_2 \right] \left[\text{H}_2 \right]^2}$$

- 29. Of the units below, ______ are appropriate for a first-order reaction rate constant.
 - A) M s⁻¹
 - B) s-1
 - C) mol/L
 - D) M-1 s-1
 - E) L mol⁻¹ s⁻¹
- 30. Which of the following compounds do <u>not</u> contain an sp³ hybridized oxygen atom?

- A) Ketones
- B) Alcohols
- C) Ethers
- D) Esters
- E) Water

31. Which of the following is a statement of the first law of thermodynamics?

- A) $E_k = (1/2) mv^2$
- B) A negative ΔH corresponds to an exothermic process.
- C) $\Delta E = E_{\text{final}} E_{\text{initial}}$
- D) Energy lost by the system must be gained by the surroundings.
- E) 1 cal = 4.184 J (exactly)
- 32. The rate law of a reaction is rate = k[D][X]. The units of the rate constant are _____
 - A) mol $L^{-1}s^{-1}$
 - B) L mol⁻¹s⁻¹
 - C) $mol^2 L^{-2}s^{-1}$
 - D) mol $L^{-1}s^{-2}$
 - E) $L^2 \mod -2s^{-1}$
- 33. "Isothermal" means _____
 - A) At constant pressure
 - B) At constant temperature
 - C) At variable temperature and pressure conditions
 - D) At ideal temperature and pressure conditions
 - E) That $\Delta H_{\rm rxn} = 0$

34. Which structure below represents a ketone?

35. The K_{eq} for the equilibrium below is 7.52×10^{-2} at 480.0°C.

2Cl₂ (g) + 2H₂O (g) \longrightarrow 4HCl (g) + O₂ (g)

What is the value of K_{eq} at this temperature for the following reaction?

4HCl (g) + O₂ (g) → 2Cl₂ (g) + 2H₂O (g)

- A) 0.0752
- B) -0.0752
- C) 13.3
- D) 5.66 × 10-3
- E) 0.150
- 36. Under what condition(s) is the enthalpy change of a process equal to the amount of heat transferred into or out of the system?
 - (a) Temperature is constant
 - (b) Pressure is constant
 - (c) Volume is constant
 - A) a only
 - B) b only
 - C) c only

- D) a and b
- E) b and c
- 37. The rate law for a reaction is
 - rate = k [A][B]²
 - Which one of the following statements is false?
 - The reaction is first order in A. A)
 - The reaction is second order in B. B)
 - The reaction is second order overall. C)
 - D) *k* is the reaction rate constant
 - If [B] is doubled, the reaction rate will increase by a factor of 4. E)
- Which of the following expressions is the correct equilibrium-constant expression for the 38. reaction below?

 CO_2 (s) + H₂O (l) \longrightarrow H⁺ (aq) + HCO₃⁻ (aq)

- [H⁺][HCO₃⁻] / [CO₂] A)
- B) $[CO_2] / [H^+] [HCO_3^-]$
- C) [H⁺][HCO₃⁻] / [CO₂][H₂O]
- [CO₂][H₂O] / [H⁺][HCO₃⁻] D)
- E) [H⁺][HCO₃⁻]

38. Hydrocarbons containing carbon-carbon triple bonds are called _____

- Alkanes A)
- B) Aromatic hydrocarbons
- C) Alkynes
- D) Alkenes
- E) Olefins

Of the following, only 39. is impossible for an ideal gas.

- $\frac{\mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{V}_2}{\mathbf{T}_2}$ A) $V_1 T_1 = V_2 T_2$ B)
- $\frac{V_1}{V_2} = \frac{T_1}{T_2}$ C)

D)
$$V_2 = \frac{T_2}{T_1} V_1$$

E) $\frac{V_1}{V_2} = \frac{T_1}{T_2} = 0$

- 40. Of the following equilibria, only ______ will shift to the left in response to a decrease in volume.
 - A) $H_2(g) + Cl_2(g) \longrightarrow 2 HCl(g)$
 - B) 2 SO₃ (g) --- 2 SO₂ (g) + O₂ (g)
 - N₂ (g) + 3 H₂ (g) --- 2 NH₃ (g) C)
 - 4 Fe (s) + 3 O₂ (g) ---- 2 Fe₂O₃ (s) D)
 - E) $2HI(g) \longrightarrow H_2(g) + I_2(g)$

41.

The reaction

 $CH_3-N\equiv C \rightarrow CH_3-C\equiv N$

is a first-order reaction. At 230.3 °C, k = 6.29×10^{-4} s⁻¹. If [CH₃-N=C] is 1.00×10^{-3} initially, [CH₃-N≡C] is _____ after 1.000×10^3 s.

- 5.33×10^{-4} A)
- B) 2.34×10^{-4}
- C) 1.88×10^{-3}
- 4.27×10^{-3} D)
- 1.00×10^{-6} E)
- In which of the following reactions would increasing pressure at constant temperature not 42. change the concentrations of reactants and products, based on Le Châtelier's principle?
 - A) N₂ (g) + 3H₂ (g) ---- 2NH₃ (g)
 - B) N₂O₄ (g) ---> 2NO₂ (g)
 - C) N₂ (g) + 2O₂ (g) \longrightarrow 2NO₂ (g)
 - $2N_2(g) + O_2(g) \longrightarrow 2N_2O(g)$ D)
 - E) N₂ (g) + O₂ (g) ---- 2NO (g)
 - The general formula of an alkene is _____.
 - A) $C_{2n}H_{2n+2}$
 - B) C_nH_{2n}
 - C) C_nH_{2n+2}
 - D) C_nH_{2n-2}
 - E) C_nH_n
- Which of the following is a statement of Hess's law? 44.

If a reaction is carried out in a series of steps, the ΔH for the reaction will A) equal the sum of the enthalpy changes for the individual steps.

If a reaction is carried out in a series of steps, the ΔH for the reaction will B) equal the product of the enthalpy changes for the individual steps.

The ΔH for a process in the forward direction is equal in magnitude and C) opposite in sign to the ΔH for the process in the reverse direction.

D) The ΔH for a process in the forward direction is equal to the ΔH for the process in the reverse direction.

The ΔH of a reaction depends on the physical states of the reactants and E) products.

The reaction $A \rightarrow B$ is first order in [A]. Consider the following data.

time (s)	[A] (M)
0.0	1.60
10.0	0.40
20.0	0.10

The rate constant for this reaction is s^{-1} . 45.

- A) 0.013
- B) 0.030
- C) 0.14
- D) 3.0
- 3.1×10^{-3} E)
- Sodium bicarbonate is reacted with concentrated hydrochloric acid at 37.0°C and 1.00 atm. 46. The reaction of 6.00 kg of bicarbonate with excess hydrochloric acid under these conditions will produce _____ L of CO₂.
 - A) 1.09×10^{2}
 - B) 2.85×10^{4}
 - C) 1.82×10^{4}

43.

- 8.70×10^{2} D)
- E) 1.82×10^{3}
- 47. Consider the following two reactions:
 - $A \rightarrow 2B$ $\Delta H^{\circ}rxn = 456.7 \text{ kJ/mol}$

 $A \rightarrow C$ $\Delta H^{\circ}_{rxn} = -22.1 kJ/mol$

Determine the enthalpy change for the process:

- $2B \rightarrow C$
- -478.8 kJ/mol A)
- B) -434.6 kJ/mol
- C) 434.6 kJ/mol
- D) 478.8 kJ/mol
- E) More information is needed to solve the problem.

As the temperature of a reaction is increased, the rate of the reaction increases because the 48.

> A) Reactant molecules collide less frequently

B) Reactant molecules collide more frequently and with greater energy per collision

Activation energy is lowered C)

D) Reactant molecules collide less frequently and with greater energy per collision

- Reactant molecules collide more frequently with less energy per collision E) 49. The kinetic-molecular theory predicts that pressure rises as the temperature of a gas increases because
 - The average kinetic energy of the gas molecules decreases A)
 - B) The gas molecules collide more frequently with the wall
 - C) The gas molecules collide less frequently with the wall
 - D) The gas molecules collide more energetically with the wall

Both the gas molecules collide more frequently with the wall and the gas E) molecules collide more energetically with the wall

50. Which energy difference in the energy profile below corresponds to the activation energy for the forward reaction?

Reaction pathway

- A) х
- B) У
- C) X + \
- D) X - V
- E) v - x

Section B

Question 1

- a. The temperature of a sample of an ideal gas in a sealed 5.0 L container is raised from 27 °C to 77
 °C. If the initial pressure of the gas was 3.0 atm, what is the final pressure? (3)
- b. A 0.614 mole sample of ideal gas at 12 °C occupies a volume of 4.3 L. What is the pressure of the gas?
 (3)
- c. A solution is made by mixing 15.3 mL of 0.25 M HCl and 17.0 mL of 0.33 M NaOH. Calculate the pH of this solution.
 (6)
- d. Given the data in the table below, calculate ΔH°_{rxn} for the reaction

$Ca(OH)_2 + 2H_3AsO_4$	← Ca(H ₂ AsO ₄);	$\rightarrow Ca(H_2AsO_4)_2 + 2H_2O.$						
	Substance	ΔH° _f (kJ/mol)						
	Ca(OH)₂	-986.6						
	H ₃ AsO ₄	-900.4						
	$Ca(H_2AsO_4)_2$	-2346.0						
	H ₂ O	-285.9						

e. For the reaction:

 $H_2(g) + I_2(g) \Longrightarrow 2 HI(g)$

 $K_p = 794$ at 298 K and $K_p = 55$ at 700 K. Is the formation of HI favored more at the higher or lower temperature? (3)

Question 2

- a) Define the following terms:
 - i. Saturated hydrocarbon
 - ii. Unsaturated hydrocarbon
- b) Give the IUPAC names of:

(4)

(12)

(10)

- c) Derive all possible isomers of:
 - i. C_3H_8
 - ii. C₄H₁₀
 - iii. C_5H_{12}

d) Write the structural formula of the following incorrect IUPAC name (2methylcyclohexene) and give the correct name.

(3)

(6)

Question 3

- a. Write the equilibrium-constant expressions for the following reactions:
 - (4)

- $K_c \text{ for } \operatorname{Cr}(s) + 3 \operatorname{Ag}^+(aq) \rightleftharpoons \operatorname{Cr}^{3+}(aq) + 3 \operatorname{Ag}(s)$ $K_p \text{ for } 3 \operatorname{Fe}(s) + 4 \operatorname{H}_2\operatorname{O}(g) \rightleftharpoons \operatorname{Fe}_3\operatorname{O}_4(s) + 4 \operatorname{H}_2(g)$ i) ii)
- b. Nitrous oxide can be formed by thermal decomposition of ammonium nitrate. NH₄NO_{3(s)} $N_2O_{(g)} + 2H_2O_{(g)}$ +
- What mass of ammonium nitrate would be required to produce 115 L of N₂O at 2800 Torr and 42°C (3) State Dalton's law of partial pressures. (2) с. (i)
 - At 25°C, 0.300 moles of $CH_{4(g)}$, 0.200 mole of $H_{2(g)}$ and 0.400 mole of $N_{2(g)}$ are (ii) contained in a 10.0 L flask. Evaluate the partial pressure (in atm), of each of the components of the gaseous mixture in the flask, and the overall pressure in the flask. (5)
 - (iii) Suppose the temperature of the flask above is raised from 25°C to 75°C, evaluate the ratio of the total pressures in the flask at the two temperatures. (3)
 - Calculate the volume of 0.65 mole of an ideal gas at 499 Torr and 102°C (iv) (3) use R = $0.0821 \text{ L.atm.mol}^{-1}\text{K}^{-1}$) (NB:
- d. Tennis balls are usually filled with either air or N2 gas to a pressure above atmospheric pressure to increase their bounce. If a tennis ball has a volume of 144 cm³ and contains 0.33 g of N_2 gas, what is the pressure inside the ball at 24 °C? (5)

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2 997 924 58 ¥ 16 ² m e ⁻¹
Elementary charge	e	1 602 177 ¥ 10 ¹⁹ C
Faraday constant	F=N.e	9 6485 X 10 ⁴ C mol ¹
Boltzmann constant	k	1.380 66 X 10 ⁻¹⁰ T X-1
Gas constant	R = N.k	8 314 51 JK ⁻¹ mol ¹
	·····	8.205 78 X 10 ⁻² dm ³ stm K ⁻³ mol ¹³
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h ·	6.626 08 X 10 ⁻²⁴ J s
	ħ − b/2π	1 054 57 X 10 ⁴⁴ T e
Avogadro constant	N,	6.022 14 X 10 ²² mol ⁴
Atomic mass unit	u	1.660 54 X 10 ⁴¹ Kg
Mass	1	
- electron	m.	9.109 39 X 10 ⁴¹ Ke
proton	m	1.672 62 X 10 ⁻¹⁷ Kg
neutron	m.	1.674 93 X 10" Kg
Vacuum pennittivity	ε = 1/σ μ	8.854 19 X 10 ⁴² F ⁱ C ⁴ m ⁻¹
•	4πe.	1.112 65 X 10 ⁻¹⁰ I ⁴ C ⁴ m ⁴
Vacuum permeability	μ	$4\pi \times 10^7 J s^2 C^2 m^4$
-	· • •	4x X 10 ⁻⁷ T ² J ⁴ m ³
Magneton	••	
Bohr	$\mu_{a} = c t/2m$	9.274 02 X 10 ²⁴ J T
nuclear	$\mu_{\rm u} = c V 2m$	5.050 79 X 10 ²⁷ J T ⁻¹
g value	Se.	2.002 32
Bohr radius	$a_{\rm c} = 4\pi a_{\rm c} N/m_{\rm c}^{-1}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu e^{2} c/2h$	7.297 35 X 103
Rydberg constant	$R_{-} = m_{e}^{4}/8h^{2}ce^{1}$	1 097 37 ¥ 10 ⁷ m ⁻¹
Standard acceleration		
of free fall -	g -	9.806 65 m s ⁴
Gravitational constant	Ğ	6.672 59 X 10 ⁴⁴ N m ³ Kg ²
	. •	

Conversion factors

1 c <u>al</u> ==	4.184 joules (J)			1 erg			-	1 X 107 J		
1 cV ==	1.602 2 X 10-19 J			1 eV/molecule				96 485 kJ moř ¹		
Prefixes	f femto	p pico 10 ⁻¹¹	n nano 10*	µ micro 10r€	m milli	c centi	d deci 103	k kilo	M mega	G - giga

- .

PERIODIC TABLE OF ELEMENTS

Indication Indication <th colspan="11">GROUPS</th>	GROUPS																		
PERIODS IA IIA IIB IVB VB VIB VIB VIIB IB IB IIA IVA VA VIA VIIA VIIA 1 H 1 -		1	2	· 3	4	5	6	7	8	9	10:	11	12	13	14	15	16	17	18
1 H 1 4.003 He 2 Li Be 3 4 4.003 He 2 2 Li Be 3 4 5.991 1.0.08 11 12.011 14.007 15.999 18.998 20.180 P Ne 2 2.990 24.305 7 8 9 10 10 15.996 18.998 20.180 Symbol Atomic No. F Ne 9 10 20.21 26.982 28.086 30.974 32.06 35.453 39.948 3 Na Mg H 12 11 12 12 14 15 16_2 17 18 4 K Ca Sc Ti V Cr Mn re C0 Ni Cu Zn Ge As Se Br Kr 18 36 34 35 36 36 65.49 63.546 65.39 69.723 72.61 74.92 78.96 79.904 83.80 36 36 31 32 33 34 35 </td <td>PERIODS</td> <td>IA</td> <td>IIA</td> <td>IIIB</td> <td>IVB</td> <td>VB</td> <td>VIB</td> <td>VIIB</td> <td></td> <td>VIIIB</td> <td>4</td> <td>IB</td> <td>IIB</td> <td>ША</td> <td>IVA</td> <td>VA</td> <td>VIA</td> <td>VIIA</td> <td>VIIIA</td>	PERIODS	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB	4	IB	IIB	ША	IVA	VA	VIA	VIIA	VIIIA
1 H 1 He 1 2 Li Be 3 4 3 4 5 66 7 8 9 20.180 3 4 5 6 7 8 9 10 3 Na Mg 11 12 14.007 15.99 18.98 20.180 3 Na Mg 11 12 14.007 16.0811 12.011 14.007 15.99 18.998 20.180 3 Na Mg Mg 12 5 6 7 8 9 10 4 No R 7 8 9 10 14 15 16_4 17 18 10 12 72.01 74.88 50.942 51.996 54.938 55.847 58.933 58.69 63.546 65.39 69.723 72.61 74.922 78.96 79.904 83.80 4 K Ca Sc Ti V Cr Mn Fe Cd Ni Cu		1.008					- 1		-										4.003
1 - 2 1 - 2 2 6.941 9.012 3 4 2 3 4 1 <th< th=""><th>1</th><th>H</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>L</th><th></th><th></th><th></th><th>۰ ۰</th><th></th><th></th><th></th><th></th><th>He</th></th<>	1	H								L				۰ ۰					He
2 Li Be 3 4 Atomic mass Join 1 12.011 14.007 15.999 18.998 20.180 3 3 4 Symbol Atomic mass Join 1 12.011 14.007 15.999 18.998 20.180 3 14 3 4 Simol Na Mg C N O F Ne 3 Na Mg 11 12 Transfirton ELEMENTS Simol Atomic mass Join 1 14 15 16.2 17 18 4 39.098 40.078 44.956 47.88 50.942 51.996 54.938 55.847 58.933 58.69 63.546 65.39 69.723 72.61 74.922 78.96 79.904 83.80 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Sc Br Kr 10 20 21 22 23 24 25 26 27	-	1													·				2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6.941	9.012]								Atomi	c mass -	10.811	12.011	14.007	15.999	18.998	20.180
3 4 22.990 24.305 3 Ma Mg Mg 11 12 12 26.982 28.086 30.974 32.06 35.453 39.948 4 Mg 11 12 TRANSITION ELEMENTS Atomic No. →5 6 7 8 9 10 4 Mg 11 12 TRANSITION ELEMENTS 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 36 5 K Ca Ss Y Zr Nb Mo Tc Ru Rh Pd' Ag Cl In Sn Sb Te I Xe 36 36 36 36 36 36 36 36 <th>2</th> <th>Li</th> <th>Be</th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th> <th>*</th> <th>Syn</th> <th>nbol -</th> <th>₿</th> <th> C</th> <th>N</th> <th>0</th> <th>F</th> <th>Ne</th>	2	Li	Be					•			*	Syn	nbol -	₿	C	N	0	F	Ne
3 22.990 24.305 Xa Mg Xa Mg Xa Mg Xa Xa Mg Xa Xa Xa Mg Xa	_	3	4	-					×	•		Atom	ic No. 📑		6	7	. 8	9	10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		22 000	24 305	-	۰.									26 982	28 086	30,974	32.06	35.453	39.948
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Na	124.505 Ma				-		א מכורה הרוכור ד					A 1	Si	Р	S	CI	Ar
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. 5	11	12 IVI				TRAN	STIO	N ELEM	LENTS				13	14	15	16	17	18
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. 12			F	·····	T	T	·····;			T				6	70.004	02.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		39.098	40.078	44.956	47.88	50,942	51,996	54.938	55.847	58.933	58,69	63.546	65.39	69,723	72.61	74.922	78.96	79,904	83,80
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Cö	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
85.468 87.62 88.906 91.224 92.906 95.94 98.907 101.07 102.91 106.42 107.87 112.41 114.82 118.71 121.75 127.60 126.90 131.29 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 6 Cs Ba *La Hf Ta W Re Os Ir Pt Au Hg 200.59 204.38 207.2 208.98 (209) (210) (222) 6 Cs 55 56 57 72 73 74 75 76 77. 78 79 80 81 82 83 84 85 86 7 Fr Ra **Ac Rf Ha Unh		19	20	21	22	23	24	25	26 :	27	28	29	30	31	32	33	34	33	30
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 6 I32.91 137.33 138.91 178.49 180.95 183.85 186.21 190.2 192.22 195.08 196.97 200.59 204.38 207.2 208.98 (209) (210) (222) 6 Cs Ba *La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 7 Fr Ra **Ac Rf Ha Unh Uns Uno Une <th< th=""><th></th><th>85,468</th><th>87.62</th><th>88.906</th><th>91.224</th><th>92.906</th><th>95.94</th><th>98,907</th><th>101.07</th><th>102.91</th><th>106.42</th><th>107.87</th><th>112.41</th><th>114.82</th><th>118.71</th><th>121.75</th><th>127.60</th><th>126.90</th><th>131.29</th></th<>		85,468	87.62	88.906	91.224	92.906	95.94	98,907	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
37 38 39 40 41 42 43 44 45 ¹ 46 47 48 49 50 51 52 53 54 6 132.91 137.33 138.91 178.49 180.95 183.85 186.21 190.2 192.22 195.08 196.97 200.59 204.38 207.2 208.98 (209) (210) (222) 6 Cs Ba *La Hf Ta W Re Os Ir' Pt Au Hg TI Pb Bi Po At Rn 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 7 Fr Ra **Ac Rf Ha Unh Uns Uno Une 4 4 45 46 47 48 49 50 51 52 53 54 6 Cs 55 56 57 72 73	5	Rb	Sr	Y	Zr	Nb.	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
6 132.91 137.33 138.91 178.49 180.95 183.85 186.21 190.2 192.22 195.08 196.97 200.59 204.38 207.2 208.98 (209) (210) (222) 6 Cs Ba *La Hf Ta W Re Os Ir' Pt Au Hg Ti Pb Bi Po At Rn 55 56 57 72 73 74 75 76 77. 78 79 80 81 82 83 84 85 86 7 Fr Ra **Ac Rf Ha Unh Uns Uno Une Uno If If Fi Ra 89 104 105 106 107 108 109 110 If If Fi If If <td></td> <td>37</td> <td>38</td> <td>39</td> <td>40</td> <td>41</td> <td>42</td> <td>43</td> <td>44</td> <td>45</td> <td>46</td> <td>47</td> <td>48</td> <td>49</td> <td>50</td> <td>51</td> <td>52</td> <td>: 33</td> <td>. 54</td>		37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	: 33	. 54
6 Cs Ba *La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 7 Fr Ra **Ac Rf Ha Unh Uns Uno Une Uun 34 87 88 89 104 105 106 107 108 109 110 34 44 45 46		132.91	137.33	138.91	178.49	180.95	18,3.85	186.21	190.2	192,22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 223 226.03 (227) (261) (262) (263) (262) (265) (266) (267) 7 Fr Ra **Ac Rf Ha Unh Uns Uno Une Unn Image: Constraint of the state	6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg]	TI	Pb	Bi	Po	At	Rn
7 223 226.03 (227) (261) (262) (263) (265) (266) (267) 7 Fr Ra **Ac Rf Ha Unh Uns Uno Une Uun 87 88 89 104 105 106 107 108 109 110		55	56	57	72	73	74	75	76	77.	78	79	80	81	82	83	84	85	86
7 Fr Ra **Ac Rf Ha Unh Uno Une Uun 87 88 89 104 105 106 107 108 109 110 101		223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)								
87 88 89 104 105 106 107 108 109 110	7	Fr	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun	· 清香 /							
		87	88	89	104	105	106	107	108	109	110	Ì.	•						
				· · · · ·		*** <u>**********************************</u>				÷		. ,							
140.12 140.91 144.24 (145) 150.36 151.96 157.25 158.93 162.50 164.93 167.26 168.93 173.04 174.97					140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162,50	164.93	167.26	168.93	173.04	174.97	
*Lanthanide Series Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu	*La	anthanic	le Serie	8	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb.	Dy	Ho	Er	Tm	Yb	Lu	
58 59 60 61 62 63 464 65 66 67 68 69 70 71					58	59	60	61	62	63	1 64	65	66	67	68	69	70 .	71	
** A atimida Series 232.04 231.04 238.03 237.05 (244) (247) (247) (251) (252) (257) (258) (259) (260)	**	Actinid	- Samian		232.04	231.04	238.03	237.05	(244)	(743)	6247	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Acuma	c ocries		Th	Pa	230,03 TT	Nn -	(247) Du	(275) Am	Cm	RL:	Cf	FR	Fm	Md	No	Lr	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					90	91	92	93	94	95	96 96	97	98	99	100	101	102	103	

() indicates the mass number of the isotope with the longest half-life.

UNIVERSITY OF SWAZILAND

CHEMISTRY DEPARTMENT

C112 SECTION A ANSWER SHEET

STUDENT ID NUMBER:_

The correct answer must be indicated by putting a circle on the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

1	A	В	С	D	E
2	А	В	С	D	E
3	A	В	С	D	Е
4	Α	В	С	D	E
5	A	В	С	D	Е
6	A	В	С	D	E
7	А	В	С	D	E
8	A	В	С	D	E
9	A	В	С	D	E
10	А	В	С	D	E
11	A	В	С	D	E
12	A	В	С	D	E
13	A	В	С	D	E
14	A	В	С	D	E
15	A	В	С	D	E
16	A	В	С	D	E
17	A	В	С	D	E
18	A	В	С	D	E
19	A	В	С	D	E
20	A	В	С	D	E
21	A	В	С	D	E
22	A	В	С	D	E
23	A	В	С	D	E
24	A	В	С	D	E
25	A	В	С	D	E

26	A	В	С	D	E
27	Α	В	С	D	E
28	A	В	С	D	E
29	Α	B ·	С	D	E
30	A	В	С	D	E
31	Α	В	С	D	E
32	A	В	С	D	Е
33	Α	В	С	D	Е
34	A	В	С	D	Е
35	A	В	С	D	Е
36	A	В	С	D	Е
37	A	В	С	D	Ε
38	A	В	С	D	E
39	A	В	C	D	Е
40	A	В	С	D	E
41	A	В	С	D	E
42	A	В	С	D	E
43	A	В	C	D	E
44	A	В	С	D	E
45	A	В	С	D	E
46	Α	В	С	D	E
47	Α	В	С	D	E
48	A	В	С	D	E
49	A	В	С	D	E
50	A	В	С	D	E