UNIVERSITY OF SWAZILAND
 SUPPLEMENTARY EXAMINATION - 2014, MAY

```
TITLE OF PAPER : Introductory Chemistry II
COURSE NUMBER : C112
TIME : Three Hours
```


INSTRUCTIONS

```
1. Answer all questions in Section \(\mathbf{A}\) (Total 50 marks)
2. Answer any two questions in Section \(\mathbf{B}\) (each question is 25 marks)
NB: Non-programmable electronic calculators may be used
A data sheet, a periodic table and answer sheet (for Section A) are attached
Useful data and equations:
\(1 \mathrm{~atm}=760\) Torr \(=760 \mathrm{mmHg}\)
\(1 \mathrm{~atm}=101325 \mathrm{~Pa}\)
Arrhenius equation: \(k=A e^{-E_{a} / R T} \quad\) or \(\quad \ln k=\ln A-\frac{E_{a}}{R T}\)
Van der Walls equation: \(\quad P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}\)
```

This Examination Paper Contains Twelve Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been granted by the Chief Invigilator.

1. At $27^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{p}}=0.095$ for the equilibrium:
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \longrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
A sample of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a closed vessel and allowed to equilibrate. Calculate the equilibrium partial pressure (atm) of ammonia, assuming that some solid $\mathrm{NH}_{4} \mathrm{HS}$ remains.
A) 0.31
B) 0.095
C) 0.052
D) 0.0049
E) 3.8
2. Consider the following chemical reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HI}(\mathrm{g})$
At equilibrium in a particular experiment, the concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI were 0.25 M , 0.035 M , and 0.55 M , respectively. The value of $\mathrm{K}_{\text {eq }}$ for this reaction is \qquad .
A) 23
B) 63
C) 0.0090
D) 5.1
E) 34
3. Which one of the following is true concerning the Haber process?
A) It is a process used for shifting equilibrium positions to the right for more economical chemical synthesis of a variety of substances.
B) It is a process used for the synthesis of ammonia.
C) It is another way of stating Le Châtelier's principle.
D) It is an industrial synthesis of sodium chloride that was discovered by Karl Haber.
E) It is a process for the synthesis of elemental chlorine.
4. If 30.0 L of oxygen are cooled from $200^{\circ} \mathrm{C}$ to $1^{\circ} \mathrm{C}$ at constant pressure, what is the new
volume of oxygen?
A. 0.150 L
B. 17.4 L
C. 23.0 L
D. 51.8 L
E. $6.00 \times 10^{3} \mathrm{~L}$
5. If the pressure of a gas sample is quadrupled and the absolute temperature is doubled, by what factor does the volume of the sample change?
A. 8
B. 2
C. $1 / 2$
D. $1 / 4$
E. $1 / 8$
6. If the pressure on a gas sample is tripled and the absolute temperature is quadrupled, by what factor will the volume of the sample change?
A. 12
B. 4/3
C. $3 / 4$
D. $1 / 3$
E. 4
7. The temperature of an ideal gas in a 5.00 L container originally at 1 atm pressure and $25^{\circ} \mathrm{C}$ is lowered to 220 K . Calculate the new pressure of the gas.
A. 1.0 atm
B. 1.35 atm
C. 8.8 atm
D. 0.738 atm
E. 0.114 atm
8. At what temperature will a fixed amount of gas with a volume of 175 L at $15^{\circ} \mathrm{C}$ and 760 mmHg occupy a volume of 198 L at a pressure of 640 mm Hg ?
A. $274^{\circ} \mathrm{C}$
B. $214^{\circ} \mathrm{C}$
C. $114^{\circ} \mathrm{C}$
D. $1^{\circ} \mathrm{C}$
E. $-59^{\circ} \mathrm{C}$
9. Calculate the volume occupied by 35.2 g of methane gas $(\mathrm{CH} 4)$ at $25^{\circ} \mathrm{C}$ and 1.0 atm .
$R=0.0821 \mathrm{Latm} / \mathrm{K} \mathrm{mol}$.
A. 0.0186 L
B. 4.5 L
C. 11.2 L
D. 49.2 L
E. 53.7 L
10. Calculate the volume occupied by 25.2 g of CO 2 at 0.84 atm and $25^{\circ} \mathrm{C}$.
A. 0.060 L
B. 1.34 L
C. 16.9 L
D. 24.2 L
E. 734 L
11. How many molecules of N_{2} gas can be present in a 2.5 L flask at $50^{\circ} \mathrm{C}$ and 650 mmHg ?
A. $2.1 \times 10-23$ molecules
B. 4.9×1022 molecules
C. 3.1×1023 molecules
D. 3.6×1025 molecules
E. 0.081 molecules
12. A calorimeter temperature increases by $0.45^{\circ} \mathrm{C}$ when 30 J of energy is added to it by electrical heating. When 0.10 grams of HCl is neutralized in the same calorimeter, the temperature increased by $7.3^{\circ} \mathrm{C}$. What is the $\Delta \mathrm{H}$ of neutralization of HCl in units of $\mathrm{kJ} / \mathrm{mol}$?
a) $-177 \mathrm{~kJ} / \mathrm{mol}$
b) $0.486 \mathrm{~kJ} / \mathrm{mol}$
c) $1.8 \times 10^{2} \mathrm{~kJ} / \mathrm{mol}$
d) $-486 \mathrm{~kJ} / \mathrm{mol}$
e) $177 \mathrm{~kJ} / \mathrm{mol}$
13. Given that:
$\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-296.8 \mathrm{~kJ} / \mathrm{mol}$
$2 \mathrm{SO}_{3}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=+197.8 \mathrm{~kJ} / \mathrm{mol}$
Determine the enthalpy change of the reaction: $2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})-->2 \mathrm{SO}_{3}(\mathrm{~g})$
a) $-99 \mathrm{~kJ} / \mathrm{mol}$
b) $99 \mathrm{~kJ} / \mathrm{mol}$
c) $495 \mathrm{~kJ} / \mathrm{mol}$
d) $-495 \mathrm{~kJ} / \mathrm{mol}$
e) $-791.4 \mathrm{~kJ} / \mathrm{mol}$
14. At elevated temperatures, dinitrogen pentoxide decomposes to nitrogen dioxide and oxygen:
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
When the rate of formation of O_{2} is $2.2 \times 10^{-4} \mathrm{M} / \mathrm{s}$, the rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is
\qquad M / s.
A) 1.1×10^{-4}
B) 2.2×10^{-4}
C) 2.8×10^{-4}
D) 4.4×10^{-4}
E) 5.5×10^{-4}
15. How many isomers are possible for $\mathrm{C}_{5} \mathrm{H}_{12}$?
A) 1
B) 2
C) 3
D) 4
E) 10
16. Which statement about addition reactions between alkenes and HBr is false?
A) The addition occurs at the double bond.
B) Bromine attacks the alkene carbon atom possessing a partial positive charge.
C) A hydrogen atom attaches to the alkene carbon atom possessing a partial negative charge.
D) The π bond breaks in the course of the reaction.
E) The proposed mechanism involves radicals.
17. The simplest alkyne is \qquad -.
A) ethylene
B) ethane
C) ethyne
D) propyne
E) benzene
18. The minimum number of carbons necessary for a hydrocarbon to form a branched structure is \qquad .
A) 4
B) 6
C) 3
D) 9
E) 12
19. The general formula of an alkane is \qquad .
A) $\mathrm{C}_{2 n} \mathrm{H}_{2 n+2}$
B) $\mathrm{C}_{n} \mathrm{H}_{2 n}$
C) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$
D) $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$
E) $\mathrm{C}_{n} \mathrm{H}_{n}$
20. The compound below is an \qquad -.

$\mathrm{H}-\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}$

A) alkyne
B) alkene
C) alkane
D) aromatic compound
E) olefin
22. What is the name of the compound below?

A) 2,4-methylbutene
B) 2,5-dimethylpentane
C) 2,4-ethylbutene
D) 2,4-dimethyl-1-pentene
E) 2,4-dimethyl-4-pentene
23. The compound below is a(n)

A) carboxylic acid
B) ketone
C) aldehyde
D) ester
E) amine
24. Which statement about hydrocarbons is false?
A) The smallest alkane to have structural (constitutional) isomers has 4 carbon atoms.
B) Cyclic alkanes are structural isomers of alkenes.
C) Alkanes are more reactive than alkenes.
D) Alkanes can be produced by hydrogenating alkenes.
E) Alkenes can be polymerized.
25. At equilibrium, \qquad .
A) All chemical reactions have ceased
B) The rates of the forward and reverse reactions are equal
C) The rate constants of the forward and reverse reactions are equal
D) The value of the equilibrium constant is 1
E) The limiting reagent has been consumed
26. Which one of the following is an endothermic process?
A) Ice melting
B) Water freezing
C) Boiling soup
D) Hydrochloric acid and barium hydroxide are mixed at $25^{\circ} \mathrm{C}$: the temperature increases.
E) Both A and C
27. Gaseous mixtures \qquad _.
A) Can only contain molecules
B) Are all heterogeneous
C) Can only contain isolated atoms
D) Are all homogeneous
E) Must contain both isolated atoms and molecules
28. Which of the following expressions is the correct equilibrium-constant expression for the following reaction?
$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
A) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]}$
B) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}$
c)
$\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$
D) $\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$
E) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}$ are appropriate for a first-order reaction rate constant.
A) $\quad \mathrm{Ms}^{-1}$
B) s^{-1}
C) $\mathrm{mol} / \mathrm{L}$
D) $\quad \mathrm{M}^{-1} \mathrm{~s}^{-1}$
E) $\mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
30. Which of the following compounds do not contain an $s p^{3}$ hybridized oxygen atom?
A) Ketones
B) Alcohols
C) Ethers
D) Esters
E) Water
31. Which of the following is a statement of the first law of thermodynamics?
A) $\quad E_{k}=(1 / 2) m v^{2}$
B) A negative ΔH corresponds to an exothermic process.
C) $\Delta E=E_{\text {final }}-E_{\text {initial }}$
D) Energy lost by the system must be gained by the surroundings.
E) $1 \mathrm{cal}=4.184 \mathrm{~J}$ (exactly)
32. The rate law of a reaction is rate $=k[D][X]$. The units of the rate constant are \qquad ..
A) $\mathrm{molt}^{-1} \mathrm{~s}^{-1}$
B) $\mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
C) $\mathrm{mol}^{2} \mathrm{~L}^{-2} \mathrm{~s}^{-1}$
D) $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-2}$
E) $\quad L^{2} \mathrm{~mol}^{-2}-1$
33. "Isothermal" means \qquad _.
A) At constant pressure
B) At constant temperature
C) At variable temperature and pressure conditions
D) At ideal temperature and pressure conditions
E) \quad That $\Delta H_{\mathrm{rxn}}=0$
34. Which structure below represents a ketone?
A)

B)

C)

D)

E)

35. The Keq for the equilibrium below is 7.52×10^{-2} at $480.0^{\circ} \mathrm{C}$. $2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow 4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
What is the value of $\mathrm{Keq}_{\mathrm{eq}}$ at this temperature for the following reaction?
$4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A) 0.0752
B) -0.0752
C) 13.3
D) 5.66×10^{-3}
E) $\quad 0.150$
36. Under what condition(s) is the enthalpy change of a process equal to the amount of heat transferred into or out of the system?
(a) Temperature is constant
(b) Pressure is constant
(c) Volume is constant
A) a only
B) b only
C) conly
D) $\quad a$ and b
E) $\quad b$ and c
37. The rate law for a reaction is
rate $=k[\mathrm{~A}][\mathrm{B}]^{2}$
Which one of the following statements is false?
A) The reaction is first order in A.
B) The reaction is second order in B.
C) The reaction is second order overall.
D) k is the reaction rate constant
E) If $[B]$ is doubled, the reaction rate will increase by a factor of 4 .
38. Which of the following expressions is the correct equilibrium-constant expression for the reaction below?
$\mathrm{CO}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
A) $\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}\right]$
B) $\left[\mathrm{CO}_{2}\right] /\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}{ }^{-}\right]$
C) $\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
D) $\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}{ }^{-}\right]$
E) $\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]$
38. Hydrocarbons containing carbon-carbon triple bonds are called \qquad _.
A) Alkanes
B) Aromatic hydrocarbons
C) Alkynes
D) Alkenes
E) Olefins
39. Of the following, only \qquad is impossible for an ideal gas.
A) $\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$
B) $\quad V_{1} T_{1}=V_{2} T_{2}$
C) $\frac{V_{1}}{V_{2}}=\frac{T_{1}}{T_{2}}$
D) $\quad V_{2}=\frac{T_{2}}{T_{1}} V_{1}$
E) $\quad \frac{V_{1}}{V_{2}}=\frac{T_{1}}{T_{2}}=0$
40. Of the following equilibria, only \qquad will shift to the left in response to a decrease in volume.
A) $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{g})$
B) $\quad 2 \mathrm{SO}_{3}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
C) $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D) $\quad 4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
E) $\quad 2 \mathrm{HI}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
41. The reaction

$$
\mathrm{CH}_{3}-\mathrm{N} \equiv \mathrm{C} \rightarrow \mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{~N}
$$

is a first-order reaction. At $230.3^{\circ} \mathrm{C}, \mathrm{K}=6.29 \times 10^{-4} \mathrm{~s}^{-1}$. If $\left[\mathrm{CH}_{3}-\mathrm{N}=\mathrm{C}\right]$ is 1.00×10^{-3} initially, [$\mathrm{CH}_{3}-\mathrm{N}=\mathrm{C}$] is \qquad after $1.000 \times 10^{3} \mathrm{~s}$.
A) $\quad 5.33 \times 10^{-4}$
B) $\quad 2.34 \times 10^{-4}$
C) 1.88×10^{-3}
D) $\quad 4.27 \times 10^{-3}$
E) $\quad 1.00 \times 10^{-6}$
42. In which of the following reactions would increasing pressure at constant temperature not change the concentrations of reactants and products, based on Le Châtelier's principle?
A) $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B) $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
C) $\quad \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
D) $\quad 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$
E) $\quad \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})$
43. The general formula of an alkene is \qquad _.
A) $\quad \mathrm{C}_{2 n} \mathrm{H}_{2 n+2}$
B) $\mathrm{C}_{n} \mathrm{H}_{2 n}$
C) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$
D) $\quad \mathrm{C}_{n} \mathrm{H}_{2 n-2}$
E) $\quad \mathrm{C}_{n} \mathrm{H}_{n}$
44. Which of the following is a statement of Hess's law?
A) If a reaction is carried out in a series of steps, the ΔH for the reaction will equal the sum of the enthalpy changes for the individual steps.
B) If a reaction is carried out in a series of steps, the ΔH for the reaction will equal the product of the enthalpy changes for the individual steps.
C) The ΔH for a process in the forward direction is equal in magnitude and opposite in sign to the ΔH for the process in the reverse direction.
D) The ΔH for a process in the forward direction is equal to the ΔH for the process in the reverse direction.
E) The ΔH of a reaction depends on the physical states of the reactants and products.
The reaction $\mathrm{A} \rightarrow \mathrm{B}$ is first order in $[\mathrm{A}]$. Consider the following data.

time (s)	$[\mathrm{A}](\mathrm{M})$
0.0	1.60
10.0	0.40
20.0	0.10
	-1

45. The rate constant for this reaction is \qquad s^{-1}
A) 0.013
B) 0.030
C) $\quad 0.14$
D) 3.0
E) $\quad 3.1 \times 10^{-3}$
46. Sodium bicarbonate is reacted with concentrated hydrochloric acid at $37.0^{\circ} \mathrm{C}$ and 1.00 atm . The reaction of 6.00 kg of bicarbonate with excess hydrochloric acid under these conditions will produce \qquad L of CO_{2}.
A) $\quad 1.09 \times 10^{2}$
B) 2.85×10^{4}
C) $\quad 1.82 \times 10^{4}$
D) $\quad 8.70 \times 10^{2}$
E) $\quad 1.82 \times 10^{3}$
47. Consider the following two reactions:

$$
\begin{array}{ll}
\mathrm{A} \rightarrow 2 \mathrm{~B} & \Delta H^{\circ} \mathrm{rxn}=456.7 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{~A} \rightarrow \mathrm{C} & \Delta H^{\circ} \mathrm{rxn}=-22.1 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Determine the enthalpy change for the process:

$$
2 B \rightarrow C
$$

A) $\quad-478.8 \mathrm{k} / \mathrm{mol}$
B) $\quad-434.6 \mathrm{k} / \mathrm{mol}$
C) $\quad 434.6 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad 478.8 \mathrm{~kJ} / \mathrm{mol}$
E) More information is needed to solve the problem.
48. As the temperature of a reaction is increased, the rate of the reaction increases because the
A) Reactant molecules collide less frequently
B) Reactant molecules collide more frequently and with greater energy per collision
C) Activation energy is lowered
D) Reactant molecules collide less frequently and with greater energy per collision
E) Reactant molecules collide more frequently with less energy per collision
49. The kinetic-molecular theory predicts that pressure rises as the temperature of a gas increases because \qquad -
A) The average kinetic energy of the gas molecules decreases
B) The gas molecules collide more frequently with the wall
C) The gas molecules collide less frequently with the wall
D) The gas molecules collide more energetically with the wall
E) Both the gas molecules collide more frequently with the wall and the gas molecules coliide more energetically with the wall
50. Which energy difference in the energy profile below corresponds to the activation energy for the forward reaction?

A) x
B) y
C) $x+y$
D) $x-y$
E) $y-x$

Section B

Question 1

a. The temperature of a sample of an ideal gas in a sealed 5.0 L container is raised from $27^{\circ} \mathrm{C}$ to 77 ${ }^{\circ} \mathrm{C}$. If the initial pressure of the gas was 3.0 atm , what is the final pressure?
b. A 0.614 mole sample of ideal gas at $12^{\circ} \mathrm{C}$ occupies a volume of 4.3 L . What is the pressure of the gas?
c. A solution is made by mixing 15.3 mL of 0.25 M HCl and 17.0 mL of 0.33 M NaOH . Calculate the pH of this solution.
d. Given the data in the table below, calculate $\Delta H^{\circ}{ }_{\mathrm{rx}}$ for the reaction

$\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{AsO}_{4}$	$\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$	
	Substance $\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$ $\mathrm{Ca}(\mathrm{OH})_{2}$ -986.6 $\mathrm{H}_{3} \mathrm{AsO}_{4}$ -900.4 $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)_{2}$ -2346.0 $\mathrm{H}_{2} \mathrm{O}$ -285.9	

e. For the reaction:

$$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

$K_{p}=794$ at 298 K and $K_{p}=55$ at 700 K . Is the formation of HI favored more at the higher or lower temperature?

Question 2

a) Define the following terms:
i. Saturated hydrocarbon
ii. Unsaturated hydrocarbon
b) Give the IUPAC names of:
i.

ii.

iii.

iv.

v.

vi.

c) Derive all possible isomers of:
i. $\mathrm{C}_{3} \mathrm{H}_{8}$
ii. $\quad \mathrm{C}_{4} \mathrm{H}_{10}$
iii. $\quad \mathrm{C}_{5} \mathrm{H}_{12}$
d) Write the structural formula of the following incorrect IUPAC name (2methylcyclohexene) and give the correct name.

Question 3

a. Write the equilibrium-constant expressions for the following reactions:
(4)
i) $\quad K_{c}$ for $\mathrm{Cr}(s)+3 \mathrm{Ag}^{+}(a q) \rightleftharpoons \mathrm{Cr}^{3+}(a q)+3 \mathrm{Ag}(s)$
ii) $\quad K_{p}$ for $3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$
b. Nitrous oxide can be formed by thermal decomposition of ammonium nitrate.
$\mathrm{NH}_{4} \mathrm{NO}_{3(s)} \longrightarrow \mathrm{N}_{2} \mathrm{O}_{(5)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
What mass of ammonium nitrate would be required to produce 115 L of $\mathrm{N}_{2} \mathrm{O}$ at 2800 Torr and
$42^{\circ} \mathrm{C}$
c. (i) State Dalton's law of partial pressures.
(ii) At $25^{\circ} \mathrm{C}, 0.300$ moles of $\mathrm{CH}_{4(g)}, 0.200$ mole of $\mathrm{H}_{2(g)}$ and 0.400 mole of $\mathrm{N}_{2(g)}$ are contained in a 10.0 L flask. Evaluate the partial pressure (in atm), of each of the components of the gaseous mixture in the flask, and the overall pressure in the flask.
(iii) Suppose the temperature of the flask above is raised from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$, evaluate the ratio of the total pressures in the flask at the two temperatures.
(iv) Calculate the volume of 0.65 mole of an ideal gas at 499 Torr and $102^{\circ} \mathrm{C}$
(NB: use $R=0.0821$ L.atm. mol ${ }^{-1} \mathrm{~K}^{-1}$)
d. Tennis balls are usually filled with either air or N_{2} gas to a pressure above atmospheric pressure to increase their bounce. If a tennis ball has a volume of $144 \mathrm{~cm}^{3}$ and contains 0.33 g of N_{2} gas, what is the pressure inside the ball at $24^{\circ} \mathrm{C}$?

General data and fundamental constants

Conversion factors

PERIODIC TABLEOF ELEMENTS

UNIVERSITY OF SWAZILAND

CHEMISTRY DEPARTMENT
C112 SECTION A ANSWER SHEET
STUDENT ID NUMBER:

The correct answer must be indicated by putting a circle on the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

1	A	B	C	D	E
2	A	B	C	D	E
3	A	B	C	D	E
4	A	B	C	D	E
5	A	B	C	D	E
6	A	B	C	D	E
7	A	B	C	D	E
8	A	B	C	D	E
9	A	B	C	D	E
10	A	B	C	D	E
11	A	B	C	D	E
12	A	B	C	D	E
13	A	B	C	D	E
14	A	B	C	D	E
15	A	B	C	D	E
16	A	B	C	D	E
17	A	B	C	D	E
18	A	B	C	D	E
19	A	B	C	D	E
20	A	B	C	D	E
21	A	B	C	D	E
22	A	B	C	D	E
23	A	B	C	D	E
24	A	B	C	D	E
25	A	B	C	D	E

26	A	B	C	D	E
27	A	B	C	D	E
28	A	B	C	D	E
29	A	B	C	D	E
30	A	B	C	D	E
31	A	B	C	D	E
32	A	B	C	D	E
33	A	B	C	D	E
34	A	B	C	D	E
35	A	B	C	D	E
36	A	B	C	D	E
37	A	B	C	D	E
38	A	B	C	D	E
39	A	B	C	D	E
40	A	B	C	D	E
41	A	B	C	D	E
42	A	B	C	D	E
43	A	B	C	D	E
44	A	B	C	D	E
45	A	B	C	D	E
46	A	B	C	D	E
47	A	B	C	D	E
48	A	B	C	D	E
49	A	B	C	D	E
50	A	B	C	D	E
4	4				

