UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS

ACADEMIC YEAR 2013/2014

TITLE OF PAPER:	INTRODUCTORY CHEMISTRY
COURSE NUMBER:	C201
TIME ALLOWED:	THREE (3) HOURS
INSTRUCTIONS:	THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS.

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

Question One

a) Based on the Bohr model, the radius $\boldsymbol{r}_{\boldsymbol{n}}$ of an nth orbit is given by

$$
r_{n}=-\left(\epsilon_{0} n^{2} h^{2}\right) /\left(\pi m_{e} e^{2} Z\right)
$$

For each of the species $\mathrm{H}, \mathrm{Li}^{2+}$ and Be^{3+}, calculate
i) The radius of the smallest orbit
ii) The energy (in J) corresponding to the smallest orbit
[12]
b) Briefly explain why $4 \mathrm{~s}, 4 \mathrm{p}, 4 \mathrm{~d}$, and 4 f orbitals have the same energy in hydrogenlike atomic species, but have different energies in many-electron atomic species.
[5]
c) Write ground state electron configurations for the following species:
i) Bi^{3+}
ii) Te^{2-}
iii) Ag
iv) Fe^{2+}

Question two

a) Draw angular parts of any three orbitals corresponding to the subshell with $n=4$ and $\ell=2$. The diagrams should include nodal planes if present.

[6]

b) Consider the species Sn and Sn^{2+}.
i) For each of the species, calculate the effective nuclear charge, $Z_{\text {eff }}$, for a valence electron.
ii) Based on your calculation, which one of the two species is expected to have a higher ionization energy? Explain.
[14]
c) Rationalize the difference in boiling points between members of the following pairs of substances:
i) $\mathrm{HF}\left(20^{\circ} \mathrm{C}\right)$ and $\mathrm{HCl}\left(-85^{\circ} \mathrm{C}\right)$
ii) Ethylene glycol, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, ($198^{\circ} \mathrm{C}$) and, dimethoxyethane, $\mathrm{H}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3},\left(83^{\circ} \mathrm{C}\right)$

[5]

Question Three

a) Consider an orbital function whose angular part is proportional to $\sin \theta \sin \varphi$. Evaluate the function in the directions corresponding to the Cartesian coordinate axes and suggest the orientation of the angular part of the orbital. [Note: You are not required to sketch the shape of the orbital]
b) For each of the following species, write the ground state electronic configuration and indicate which electrons/orbitals are core and which ones are valence.
i) Fe
ii) Te
iii) $\mathbf{B i}$
[9]
c) In each of the following pairs, select the better choice, and briefly explain your choice:
i) Higher IE: Ca or Ba
ii) Higher $\mathrm{IE}_{1}: \mathrm{N}$ or O
iii) Higher $E A_{1}: C$ or N
iv) Larger ionic radius: In^{+}or In^{3+}

Question Four

a) For each of the molecular species given below, draw the Lewis structure, and then determine the electron-domain geometry and molecular geometry. Finally, determine the hybridization of the central atom.
i) $10 F_{5}$ (I is the central atom)
ii) XeO_{3} (Xe is the central atom)
b) Prepare a molecular orbital energy level diagram for the heteronuclear diatomic molecule NO. Use the diagram to answer questions that follow.
i) NO^{+}and NO^{-}are also known. Write electronic configurations of NO , NO^{+}and NO^{-}.
ii) For each of the three species, predict the bond order and magnetic properties
iii) Which of the three would you expect to have the shortest bond? Why?

Question Five

a) Give structural formulas of the following species and indicate the coordination number(s) around central atom(s).
i) $\quad \mathrm{BeCl}_{2}$
ii) $\quad \mathrm{B}_{2} \mathrm{H}_{6}$
iii) $\quad\left[\mathrm{SiF}_{6}\right]^{2-}$
b) Write balanced reaction equations for the following:
i) Reaction of GeCl_{4} with water
ii) Reaction of SiF_{4} with $\mathrm{H}_{2} \mathrm{SO}_{4}$
iii) Reaction of SiCl_{4} with NaOH
[6]
c) Give an outline the Born-Haber cycle for the formation of MgO (s) starting with constituent elements in their standard states. Then calculate the electron affinity of the oxygen atom in gaining two electrons to give the oxide O^{2-}, from the following data:

[11]

Question Six

a) Indicate whether the following oxides are expected to be acidic, basic or amphoteric. Give a chemical equation or, if necessary, two chemical equations to illustrate each of your answers.
i) BaO
ii) $\mathrm{Cl}_{2} \mathrm{O}_{7}$
iii) $\mathrm{Al}_{2} \mathrm{O}_{3}$.
[12]
b) Give four commonly used products which contain group 1 metal ions.
c) Complete and balance the following reactions:
i) $\mathrm{Na}+\mathrm{O}_{2}+$ heat \rightarrow
ii) $\mathrm{Ca}+\mathrm{H}_{2} \rightarrow$
iii) $\mathrm{Na}_{2} \mathrm{O}_{2}$ (s) $+\mathrm{H}_{2} \mathrm{O}($ l $) \rightarrow$
iv) $\mathrm{Li}(\mathrm{s})+\mathrm{N}_{2} \rightarrow$
[6]
d) The manufacture of sodium metal (Na) involves electrolysis of molten sodium chloride. Give half reactions that take place at the anode and cathode.

PERIODIC TABLE OF THE ELEMENTS GROUPS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	IA	IIA	11 B	Ive	ve	VIB	vili		VIII		18	118	11 A	IVA	VA	VIA	VIIA	VIIIA
1																		
2	$\begin{array}{\|c\|} \hline 6.94 i \\ \text { Li } \\ \hline \end{array}$	9.012 Be											$\begin{gathered} 10.811 \\ \mathbf{B} \\ \text { Wes. } \end{gathered}$		$\begin{gathered} 14.007 \\ \mathbf{N} \\ \hline \text { wheng } \end{gathered}$	$\left\|\begin{array}{c}15.999 \\ \mathrm{O} \\ \mathrm{B}\end{array}\right\|$	$\begin{gathered} 18.998 \\ \mathbf{F} \\ \hline 9 \end{gathered}$	
3	$\begin{array}{\|} \hline 22.990 \\ \mathbf{N a} \\ 11+ \end{array}$	$\begin{aligned} & 24.305 \\ & \mathbf{M g}_{8} \\ & \hline{ }^{2} \mathbf{2} \end{aligned}$				ANSI	ION	LEM	NTS						${ }^{30.9738} \mathbf{P}$			$\begin{array}{\|c\|} \hline 39.948 \\ \mathbf{A r}^{48} \\ \hline \end{array}$
4	${ }^{39.0983} \mathbf{K}$	$\begin{gathered} 40.078 \\ \mathbf{C a} \\ 60 \mathrm{an} \end{gathered}$	$\begin{array}{\|c\|} \hline 44.956 \\ \text { Sc } \\ \text { Suchent } \end{array}$				$\begin{aligned} & 54.938 \\ & \mathbf{M n}_{2} \\ & \hline \end{aligned}$	55.847 Fe Fe 26	$\begin{gathered} 58.933 \\ \mathrm{Co} \\ \hline 1 \end{gathered}$	$\begin{array}{\|c\|} \hline 58.69 \\ \mathrm{Ni} \\ \mathrm{~S}^{2} \mathrm{tag} \end{array}$					${ }^{74.922}$			
5	$\begin{array}{\|c\|} \hline 85.468 \\ \mathbf{R b} \\ \hline{ }^{37} \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{8 7 . 6 2} \\ \mathbf{S r} \\ \hline \end{array}$		$\begin{gathered} 91.224 \\ \mathbf{Z r} \\ \end{gathered}$		95.94 Mo $\mathbf{4 2} \mathbf{4 2}$	98.907 Tc Rex		$\begin{gathered} 102.906 \\ \mathbf{R h} \end{gathered}$	${ }^{106.42}{ }^{10}{ }^{2}$							$\stackrel{1}{126.904}_{1}^{58}$	
6	$\begin{gathered} 132.905 \\ \mathrm{Cs} \\ \hline 55 \end{gathered}$		$\begin{gathered} 138.906 \\ * \mathbf{L a} \end{gathered}$ 1aver	$\stackrel{178.49}{\mathbf{H f}^{1 / 2}}$	$\left\|\begin{array}{c} 180.948 \\ T a \\ 1633 \end{array}\right\|$	${ }^{183.85}$	${\underset{R}{188.207}}_{\mathbf{R e}^{18}}$			${ }^{195.08}{ }^{\mathbf{P} t}$	$\begin{gathered} 196.967 \\ \mathbf{A u} \\ \hline \text { ung } \end{gathered}$	$\begin{gathered} 200.59 \\ \mathbf{H g}^{2} \end{gathered}$	$\begin{gathered} 204.383 \\ T 1 \end{gathered}$	\square			$\begin{array}{\|c\|} \hline(210) \\ \mathbf{A t} \\ \hline \text { and } \\ \hline \end{array}$	
7	$\begin{gathered} \mathbf{N}_{8 \mathrm{r}}^{223} \\ \mathbf{F}^{2} \end{gathered}$	$\begin{gathered} 226.025 \\ \mathbf{R a} \\ \text { Rage } \end{gathered}$	$\begin{array}{\|c\|} \hline(227) \\ * * A c \\ W_{8} 89 \end{array}$		\square	$\begin{array}{\|c\|} \hline(263) \\ \text { Unh } \\ \hline 1066 \text { en } \\ \hline \end{array}$	(262) UnS Unto	$\begin{aligned} & \text { (265) } \\ & \text { Uno } \\ & \hline \end{aligned}$	Une					7				

- Lanthanide series
**Actinide serias

${ }^{140.115}{ }^{1}$	${ }^{140.908} \mathbf{P r}$	$\stackrel{144.24}{\mathrm{Nd}}$	$\begin{aligned} & (145) \\ & \mathbf{P m} \end{aligned}$		$\begin{array}{\|l} \begin{array}{l} 151.96 \\ \mathbf{E u} \end{array} \end{array}$				$\begin{gathered} 184.930 \\ \mathbf{H o} \end{gathered}$			${ }^{173.04}$	
						cm					M	No	
䦽90													

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are
based on the assigned reiative atomic mass of $12 \mathrm{C}=$ exacily 12 . based on the assigned relative atomic mass of ${ }^{12} \mathrm{C}=$ exacily 12 halt-life.

SOURCE: Intemational Union of Pure and Applied Chemistry, I. Mills, ed., Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988 pp 86-98

UNIVERSITY OF SWAZILAND

CHEMISTRY DEPARTMENT

Compiled by Dr. ND Silavwe

Slater's Rules:

1) Write the electron configuration for the atom using the following design;
$(1 s)(2 s, 2 p)(3 s, 3 p)(3 d)(4 s, 4 p)(4 d)(4 f)(5 s, 5 p)$ ete
2) Any electrons to the right of the electron of interest contributes no shielding. (Approximately correct statement.)
3) All other electrons in the same group as the electron of interest shield to an extent of 0.35 nuclear charge units
4) If the electron of interest is an s or p electron: All electrons with one less value of the principal quantum number shield to an extent of 0.85 units of nuclear charge. All electrons with two less values of the principal quantum number shield to an extent of 1.00 units.
5) If the electron of interest is an d or f electron: All electrons to the left shield to an extent of 1.00 units of nuclear charge.
6) Sum the shielding amounts from steps 2 through 5 and subtract from the nuclear charge value to obtain the effective nuclear charge.
