UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2013/14

TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME: THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER ANY FOUR QUESTIONS.

A DATA SHEET AND A PERIODIC TABLE ARE ATTACHED
GRAPH PAPER IS PROVIDED
NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

(a) Discuss the advantages of photochemical activation over thermal activation in chemical kinetics.
(b) In an experiment to measure the quantum yield of a photochemical reaction, the absorbing substance was exposed to 320 nm radiation from a 87.5 W source for 28.0 min . The intensity of the transmitted radiation was 0.257 that of the incident radiation. As a result of the irradiation, 0.324 mol of the absorbing substance decomposed. Calculate the quantum yield.
(c) An enzyme catalysed reaction following the Michaelis-Menten mechanism

$$
\mathrm{E}+\mathrm{S} \rightleftharpoons \mathrm{ES} \rightarrow \mathrm{P}+\mathrm{E} \quad \text { rate constants are } \mathrm{k}_{1}, k_{1}^{\prime}, \mathrm{k}_{2}
$$

has the rate law $\quad \frac{d[P]}{d t}=\frac{k_{2}[S][E]_{0}}{K_{M}+[S]} \quad$ where $\mathrm{K}_{\mathrm{M}}=\frac{k_{1}^{\prime}+k_{2}}{k_{1}}$
The following data relate to such a reaction.

$[\mathrm{S}] / \mathrm{mol} \mathrm{L}^{-1}$	0.00125	0.0025	0.0050	0.020
Rate $/ \mathrm{Mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$	2.78×10^{-5}	5.00×10^{-5}	8.33×10^{-5}	1.67×10^{-4}

The enzyme concentration is 2.3 nM . Calculate (i) the maximum rate, $\mathrm{v}_{\text {max }}$ (ii) the Michaeli's constant K_{M}, (iii) k_{2} and (iv) catalytic efficiency.
[15]

Question 2 (25 marks)

(a) Determine E° for the reaction $\mathrm{Cr}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}$ from the reduction potentials of the redox couples $\mathrm{Cr}^{3+} / \mathrm{Cr}$ and $\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}$ which are given in the below:

$$
\begin{array}{ll}
\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}^{2}(\mathrm{~s}) & \mathrm{E}^{0}=-0.744 \mathrm{~V} \\
\mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cr}^{2+}(\mathrm{aq}) & \mathrm{E}^{0}=-0.407 \tag{5}
\end{array}
$$

(b) You are given the following half-cell reactions:

$$
\begin{array}{ll}
\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pd}(\mathrm{~s}) & \mathrm{E}^{\circ}=0.83 \mathrm{~V} \\
\mathrm{PdCl}_{4}^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pd}(\mathrm{~s})+4 \mathrm{Cl}^{-}(\mathrm{aq}) & \mathrm{E}^{\circ}=0.64 \mathrm{~V}
\end{array}
$$

(i) Calculate the equilibrium constant for the reaction

$$
\mathrm{Pd}^{2+}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{PdCl}_{4}{ }^{2-}(\mathrm{aq})
$$

(ii) Calculate $\Delta_{r} G^{\circ}$ for this reaction
(c) Between $0^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$, the potential of the cell
$\mathrm{Pt}(\mathrm{s})\left|\mathrm{H}_{2}(\mathrm{~g}, \mathrm{p}=1 \mathrm{~atm})\right| \mathrm{HCl}(\mathrm{aq}, \mathrm{m}=0.100)|\mathrm{AgCl}(\mathrm{s})| \mathrm{Ag}(\mathrm{s})$
is described by the equation $E(V)=0.35510-0.3422 \times 10^{-4} t-3.2347 \times 10^{-6} t^{2}+6.314 \mathrm{x}$ $10^{-9} \mathrm{t}^{3}$, where t is the temperature on the Celsius scale.
(i) Write the cell reaction
(ii) Calculate $\Delta_{\mathrm{r}} \mathrm{G}, \Delta_{\mathrm{r}} \mathrm{H}$, and $\Delta_{\mathrm{r}} \mathrm{S}$ for the cell reaction at $50^{\circ} \mathrm{C}$.

Question 3 (25 marks)

(a) Use the kinetic theory of gases to explain the following:
(i) The thermal conductivity of a perfect gas is expected to be independent of pressure.
(ii) The thermal conductivity of a perfect gas increases as $\mathrm{T}^{1 / 2}$
[6]
(b) (i) The diffusion coefficient for Xe at 273 K and 1 atm is $5 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. What is the collisional cross section of Xe ?
(ii) The diffusion coefficient of N_{2} is threefold greater than that of Xe under the same pressure and temperature conditions. What is the collisional cross section of N_{2} ? (Atomic masses: $\mathrm{Xe}=131.29 \mathrm{u}$ and of $\mathrm{N}_{2}=28.02 \mathrm{u}$)
[10]
[Useful equations $\lambda=\frac{k T}{\sqrt{2} \sigma p} \quad \bar{c}=\left(\frac{8 k T}{\pi m}\right)^{1 / 2}$]
(c) The mobilities of $\mathrm{H}^{+}, \mathrm{Na}^{+}$and Cl^{-}are given I table below:

Ion	Mobility, $\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}$
H^{+}	3.623×10^{-7}
Na^{+}	0.519×10^{-7}
Cl^{-}	0.791×10^{-7}

(i) What proportion of the current is carried by the protons in a $1.00 \times 10^{-3} \mathrm{M}$ $\mathrm{HCl}(\mathrm{aq})$?
(ii) What fraction do they carry when NaCl is added to the acid so that the solution is 1.0 M in the salt?

Question 4 (25 marks)

(a) Suggest explanations for the following observations, in each case write an appropriate rate equation based on the Langmuir isotherm, $=\frac{K p}{1+K p}$.
(i) The decomposition of phosphine on tungsten is first order at low pressures and zero order higher pressures, the activation energy being higher at the higher pressure.
[3]
(ii) On certain surfaces (e.g. Au) the hydrogen-oxygen reaction is first order in hydrogen and zero order in oxygen, with no decrease in the rate as the oxygen pressure is greatly increased.
[3]]
(b) The volume of gas at $20^{\circ} \mathrm{C}$ and 1.00 bar adsorbed on the surface of 1.50 g of a sample of silica at $0^{\circ} \mathrm{C}$ was 1.60 mL at 52.4 kPa and 2.73 mL at 104 kPa . What is the value of $V_{\text {mon }}$?
(c) The adsorption of a gas is described by the Langmuir isotherm with $\mathrm{K}=0.777 \mathrm{kPa}^{-1}$ at $25^{\circ} \mathrm{C}$. Calculate the pressure at which the fractional surface coverage is -
(i) 0.20
(ii) 0.75 .
[6]
(d) The chemisorption of hydrogen on manganese is activated but only weakly so. Careful measurements have shown that it proceeds 35% faster at 1000 K than at 600 K . What is the activation energy for chemisorption?

Question 5 (25 marks)

(a) The gas phase reaction
$\mathrm{RI}+\mathrm{HI} \rightarrow \mathrm{RH}+\mathrm{I}_{2}$
is first order in each reactant or second order overall. The observed activation energy is $100 \mathrm{~kJ} / \mathrm{mol}$. A calculation using the kinetic molecular theory shows that if the concentration of each reactant is 1.0 M , the rate of the reaction at 300 K is 5.0×10^{10} $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}$ if every collision is effective.
(i) Calculate the predicted rate constant at 300 K using the collision theory.
(ii) The observed rate constant at 300 K is $3.0 \times 10^{8} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. What is the value of the steric factor and what does it mean?
(b) One of the hazards of nuclear explosions is the generation of ${ }^{90} \mathrm{Sr}$ and its subsequent incorporation in bones in place of calcium. This isotope emits β-rays of energy 0.55 MeV and has a half-life of 28.1 years. Suppose $1.0 \mu \mathrm{~g}$ was absorbed by a newly born child, how much will remain after (i) 18 years and (ii) 70 years?
(c) Nitrous oxide decomposes according to the reaction

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

The rate of the decomposition is quite small unless a halogen is present as a catalyst. Thus in the presence of Cl_{2}, the rate depends both on $\mathrm{N}_{2} \mathrm{O}$ and Cl_{2} pressure, i.e.

$$
-\frac{d P_{N_{2} O} O}{d t}=k P_{N_{2} O}^{a} P_{C_{2}}^{b}
$$

The course of the reaction can be followed by measuring the increase in the total pressure at constant temperature. The following data were obtained in a series of experiments at 800 K .

Initial pressure /Torr		Initial rate/Torr $\min ^{-1}$
$P_{\mathrm{N}_{2} \mathrm{O}}$	$P_{\mathrm{Cl}_{2}}$	Increase in total pressure
30	4.0	0.30
15	4.0	0.15
30	1.0	0.15

(i) From the given data determine the values of a and b in the rate law.
(ii) Calculate the rate constant at 800 K .

Question 6 (25 marks)

(a) A first order decomposition reaction is observed to have the following rate constants at the indicated temperatures.

$\mathrm{k} / 10^{-3} \mathrm{~s}^{-1}$	2.46	45.1	576
$\theta /{ }^{\circ} \mathrm{C}$	0	20.0	40.0

Evaluate the Arrhenius parameters, E_{a} and A (Arrhenius equation; $k=A e^{-E_{a} / R T}$).
(b) Conductivities are often measured by comparing the resistance of a cell filled with the sample to its resistance when filled with a standard solution, such as aqueous potassium chloride. At $25^{\circ} \mathrm{C}$ the conductivity of water is $76 \mathrm{mS} \mathrm{m}^{-1}$ and that of a $0.100 \mathrm{M} \mathrm{KCl}_{(\mathrm{aq})}$ is $1.1639 \mathrm{~S} \mathrm{~m}^{-1}$. A cell had a resistance of 33.21Ω when filled with $0.100 \mathrm{M} \mathrm{KCl}(\mathrm{aq})$ and 300.0Ω when filled with $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$. What is the molar conductivity of acetic acid at that concentration and temperature?
(c) Values of the molar polarization, P_{m}, of gaseous water at 100 kPa were determined and are given below as a function of temperature.

T / K	384.3	420.1	444.7	484.1	522.0
$\mathrm{P}_{\mathrm{m}} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	57.4	53.5	50.1	46.8	43.1

Use this data to calculate the dipole moment of $\mathrm{H}_{2} \mathrm{O}$ and its polarizability volume. (Useful equations: $\quad \mathrm{P}_{\mathrm{m}}=\frac{4 \pi}{3} \mathrm{~N}_{\mathrm{A}} \alpha^{\prime}+\frac{\mathrm{N}_{\mathrm{A}} \mu^{2}}{9 \varepsilon_{0} \mathrm{kT}} \quad$ with $\alpha=4 \pi \varepsilon_{0} \alpha^{\prime}$)

