UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2013/14

TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME:

1

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER ANY FOUR QUESTIONS.

4

A DATA SHEET AND A PERIODIC TABLE ARE ATTACHED

GRAPH PAPER IS PROVIDED

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

- (a) Discuss the advantages of photochemical activation over thermal activation in chemical kinetics. [4]
- (b) In an experiment to measure the quantum yield of a photochemical reaction, the absorbing substance was exposed to 320 nm radiation from a 87.5 W source for 28.0 min. The intensity of the transmitted radiation was 0.257 that of the incident radiation. As a result of the irradiation, 0.324 mol of the absorbing substance decomposed. Calculate the quantum yield.
 [6]
- (c) An enzyme catalysed reaction following the Michaelis-Menten mechanism $E + S \Rightarrow ES \rightarrow P + E$ rate constants are k_1, k_2

has the rate law $\frac{d[P]}{dt} = \frac{k_2[S][E]_0}{K_M + [S]}$ where $K_M = \frac{k_1 + k_2}{k_1}$

The following data relate to such a reaction.

[S]/mol L ⁻¹	0.00125	0.0025	0.0050	0.020
Rate/Mol L ⁻¹ s ⁻¹	2.78 x10 ⁻⁵	5.00 x10 ⁻⁵	8.33 x10 ⁻⁵	1.67 x10 ⁻⁴

The enzyme concentration is 2.3nM. Calculate (i) the maximum rate, v_{max} (ii) the Michaeli's constant K_M , (iii) k_2 and (iv) catalytic efficiency. [15]

Question 2 (25 marks)

(a) Determine E° for the reaction $Cr^{2^+} + 2e^- \rightarrow Cr$ from the reduction potentials of the redox couples Cr^{3^+}/Cr and Cr^{3^+}/Cr^{2^+} which are given in the below: $Cr^{3^+}(aq) + 3e^- \rightarrow Cr(s) \qquad E^\circ = -0.744 \text{ V}$ $Cr^{3^+}(aq) + e^- \rightarrow Cr^{2^+}(aq) \qquad E^\circ = -0.407 \qquad [5]$

(b) You are given the following half-cell reactions:

 $Pd^{2+}(aq) + 2e^{-} \Rightarrow Pd(s) \qquad E^{\circ} = 0.83 V$ $PdCl_{4}^{2-}(aq) + 2e^{-} \Rightarrow Pd(s) + 4Cl^{-}(aq) \qquad E^{\circ} = 0.64 V$ (i) Calculate the equilibrium constant for the reaction

- $Pd^{2+}(aq) + 4 Cl^{-}(aq) \Rightarrow PdCl_4^{2-}(aq)$
- (ii) Calculate $\Delta_r G^\circ$ for this reaction

(c) Between 0 °C and 90 °C, the potential of the cell

 $Pt(s)|H_2(g, p = 1 \text{ atm})|HCl(aq, m = 0.100)|AgCl(s)|Ag(s)|$

is described by the equation $E(V) = 0.35510 - 0.3422 \times 10^{-4}t - 3.2347 \times 10^{-6}t^{2} + 6.314 \times 10^{-9}t^{3}$, where t is the temperature on the Celsius scale.

- (i) Write the cell reaction
- (ii) Calculate $\Delta_r G$, $\Delta_r H$, and $\Delta_r S$ for the cell reaction at 50 °C. [15]

[5]

Question 3 (25 marks)

- (a) Use the kinetic theory of gases to explain the following:
 - (i) The thermal conductivity of a perfect gas is expected to be independent of pressure.

[6]

- (ii) The thermal conductivity of a perfect gas increases as $T^{1/2}$
- (b) (i) The diffusion coefficient for Xe at 273 K and 1 atm is $5 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$. What is the collisional cross section of Xe?
 - (ii) The diffusion coefficient of N_2 is threefold greater than that of Xe under the same pressure and temperature conditions. What is the collisional cross section of N_2 ? (Atomic masses: Xe = 131.29 u and of N_2 = 28.02 u) [10]

[Useful equations $\lambda = \frac{kT}{\sqrt{2}\sigma p}$ $\bar{c} = \left(\frac{8kT}{\pi m}\right)^{1/2}$]

(c) The mobilities of H^+ , Na^+ and Cl^- are given I table below:

Ion	Mobility, $m^2 s^{-1} V^{-1}$
H	3.623 x 10 ⁻⁷
Na ⁺	0.519 x 10 ⁻⁷
Cl	0.791 x 10 ⁻⁷

- (i) What proportion of the current is carried by the protons in a 1.00×10^{-3} M HCl(aq)?
- (ii) What fraction do they carry when NaCl is added to the acid so that the solution is 1.0 M in the salt? [9]

Question 4 (25 marks)

- (a) Suggest explanations for the following observations, in each case write an appropriate rate equation based on the Langmuir isotherm, $=\frac{Kp}{1+Kp}$.
 - (i) The decomposition of phosphine on tungsten is first order at low pressures and zero order higher pressures, the activation energy being higher at the higher pressure.
 [3]
 - (ii) On certain surfaces (e.g. Au) the hydrogen-oxygen reaction is first order in hydrogen and zero order in oxygen, with no decrease in the rate as the oxygen pressure is greatly increased.
- (b) The volume of gas at 20°C and 1.00 bar adsorbed on the surface of 1.50 g of a sample of silica at 0 °C was 1.60 mL at 52.4 kPa and 2.73 mL at 104 kPa. What is the value of V_{mon}? [8]
- (c) The adsorption of a gas is described by the Langmuir isotherm with $K = 0.777 \text{ kPa}^{-1}$ at 25 °C. Calculate the pressure at which the fractional surface coverage is . (i) 0.20 (ii) 0.75. [6]

 (d) The chemisorption of hydrogen on manganese is activated but only weakly so. Careful measurements have shown that it proceeds 35% faster at 1000 K than at 600 K. What is the activation energy for chemisorption? [5]

Question 5 (25 marks)

(a) The gas phase reaction

 $RI + HI \rightarrow RH + I_2$

is first order in each reactant or second order overall. The observed activation energy is 100 kJ/mol. A calculation using the kinetic molecular theory shows that if the concentration of each reactant is 1.0 M, the rate of the reaction at 300 K is 5.0×10^{10} mol dm⁻³ s⁻¹ if every collision is effective.

- (i) Calculate the predicted rate constant at 300 K using the collision theory.
- (ii) The observed rate constant at 300 K is 3.0×10^8 dm³ mol⁻¹ s⁻¹. What is the value of the steric factor and what does it mean? [8]
- (b) One of the hazards of nuclear explosions is the generation of 90 Sr and its subsequent incorporation in bones in place of calcium. This isotope emits β -rays of energy 0.55 MeV and has a half-life of 28.1 years. Suppose 1.0 µg was absorbed by a newly born child, how much will remain after (i) 18 years and (ii) 70 years? [8]

(c) Nitrous oxide decomposes according to the reaction

 $2 N_2 O(g) \rightarrow 2 N_2(g) + O_2(g)$

The rate of the decomposition is quite small unless a halogen is present as a catalyst. Thus in the presence of Cl_2 , the rate depends both on N_2O and Cl_2 pressure, i.e.

$$-\frac{dP_{N_2O}}{dt} = kP_{N_2O}^a P_{Cl_2}^b$$

The course of the reaction can be followed by measuring the increase in the total pressure at constant temperature. The following data were obtained in a series of experiments at 800 K.

Initial pres	sure /Torr	Initial rate/Torr min ⁻¹
P_{N_2O}	P_{Cl_2}	Increase in total pressure
30	4.0	0.30
15	4.0	0.15
30	1.0	0.15

(i) From the given data determine the values of *a* and *b* in the rate law.

(ii) Calculate the rate constant at 800 K.

[9]

Question 6 (25 marks)

(a) A first order decomposition reaction is observed to have the following rate constants at the indicated temperatures.

k/10 ⁻³ s ⁻¹	2.46	45.1	576
θ/°C	0	20.0	40.0

Evaluate the Arrhenius parameters, E_a and A (Arrhenius equation; $k = Ae^{-E_a/RT}$). [8]

- (b) Conductivities are often measured by comparing the resistance of a cell filled with the sample to its resistance when filled with a standard solution, such as aqueous potassium chloride. At 25 °C the conductivity of water is 76 mS m⁻¹ and that of a 0.100 M KCl(aq) is 1.1639 S m⁻¹. A cell had a resistance of 33.21 Ω when filled with 0.100 M KCl(aq) and 300.0 Ω when filled with 0.100 M CH₃COOH(aq). What is the molar conductivity of acetic acid at that concentration and temperature? [8]
- (c) Values of the molar polarization, P_m , of gaseous water at 100 kPa were determined and are given below as a function of temperature.

T/K.	384.3	420.1	444.7	484.1	522.0
$P_m/(cm^3 mol^{-1})$	57.4	53.5	50.1	46.8	43.1

Use this data to calculate the dipole moment of H₂O and its polarizability volume.

Usefule	quations:	$P_{m} = \frac{4\pi}{3} N_{A} \alpha' + \frac{N_{A} \mu^{2}}{9 \varepsilon_{0} kT}$	with $\alpha = 4\pi\varepsilon_0 \alpha'$	[9]
---------	-----------	---	---	-----

General data and fundamental constants

Quantity	Symbo	bl		Value								
Speed of light			с			2.997 9	24 58	8 X 10 ⁸ m s ⁻¹				
Elementary ch	arge		e			1.602 1						
Faraday consta	ant		$F = N_{A}$	e		9.6485 X 10 ⁴ C mol ⁻¹						
Boltzmann con	nstant		k			1.380 6	66 X 10) ⁻²³ J K ⁻¹				
Gas constant			$R = N_{A}$	k		8.314 5	51 J K - 1	mol ⁻¹				
				•		8.205 3	78 X 10) ^{.2} dm ³ a	itm K ⁻¹ n	lor		
					6.2364	X 10 I	. Torr K	C' mol ⁻¹				
Planck constan	nt		h			6.626 ()8 X 10) ⁻³⁴ Js				
	$\hbar = h/2$	2π		1.054 :	57 X 10) ⁻³⁴ J s						
Avogadro con	stant		N			6.022	14 X 10)²² mol ⁻ⁱ				
Atomic mass	unit		u			1.660 :	54 X 10) ⁻²⁷ Kg				
Mass								_				
electro	n		- m _e			9.109	39 X 10) ⁻³¹ Kg				
proton			m,			1.672	52 X 1'()-27 Kg				
neutro	n.		m			1.674	93 X 1()-27 Kg				
Vacuum perm	ittivity		ε = 1/	c²μ		8.854	19 X İ() ⁻¹² J ⁻¹ C	² m ⁻¹			
			4πε,			1.112	55 X 1()-10 J-1 C	$2 m^{-1}$			
Vacuum perm	eability		μ			4π X 1	0 ⁻⁷ J s ²	C ⁻² m ⁻¹				
						4π X 1	0 ⁻⁷ T ²	^r m ³				
Magneton												
Bohr			$\mu_{\rm B} = e$	ħ/2m		9.274	02 X 1	0 ⁻²⁴ J T ⁻¹				
nuclea	r		$\mu_N = e$	ħ/2m		5,050	79 X 1	0-27 J T-1				
g valu	e		Se.	•		2.002	32					
Bohr radius			a = 41	te.ħ/m.e	2	5.291	77 X 1	0 ⁻¹¹ m				
Fine-structure	constan	it	$\alpha = \mu_{c}$	e ² c/2h	•	7.297 35 X 10 ⁻³						
Rydberg cons	tant		R_ = r	n.e ⁴ /8h ³ c	ε. ²	1.097	37 X 1	0 ⁷ m ⁻¹				
Standard acce	eleration											
of free fall			g		•	9.806	65 m s'	2	*			
Gravitational	constant	t	Ğ			6.672	59 X 1	0 ¹¹ N m	² Kg ⁻²			
								,				
Conversio	on fac	tors										
1 col - 4 194 ioulos (ന	1 erg				1 2 1	0 ^{.7} J			
1 eV = 1.007 Y 100		¹⁹ J	1 eV/n	nolecul	le	222	96 48	5 kJ mo	F 1			
			-	~ ~ ~ ~ ~		*						
Prefixes	f	p	n	щ	m۰	c	d	k	м	G		
	femto	nico	папо	micro	milli	centi	deci	kilo	mega	gi		
	10-15	10-12	10-9	10-6	10-3	10-2	10-1	10 ³	10 ⁶	10		

10-6

10-3

giga 10⁹ KIIC 10³ 10⁶

.....

PERIODIC TABLE OF ELEMENTS

	GROUPS																	
	1	2	3	4	5	· 6	7	8	9	10	11	12	13	14	15	16	17	18
ERIODS	<u>IA</u>		IIIB	IVB	VB	VIB	VIIB		VIIIB		ĪB	IIB	AIII	IVA	VA	VIA	. VIIA	VIIIA
	1,008							•	*									4.003
. 1												i i				· .		He
												I.						2
	6.941	9.012									Atomic	: mass —	- 10.811	12.011	14.007	15.999	18,998	20.180
2	Li	Be									Sym	ibol	א B	C	N	0	F	-Ne
	3	4		·····			i+i+				Atomi	c No.	* 5	6	7	8	9	. 10
	22.990	24:305						`•				1	26.982	28.086	30.974	32.06	35,453	39,948
3	Na	Mg				TRAN	SITION	ELEM	ENTS		•	†	AI	Si	P	S	EI	Ar
	11	12											13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58:69 -	-63.546	65.39	69,723	72.61	74,922	78.96	79 904	83.80
4	K	Ca	Sc	Ti	V.	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	· 26	27	28	29	30	31	32	33	34	. 35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.94	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	_79	80	81	82	83	·84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)		· .			, -			
7	Fr	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	. Uun		1						
	87	88	89	104	105	106	107.	108	109	110		÷						
					5		ŀ			A.	-							
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167:26	168.93	173.04	174.97].
. *L	anthani	de Serie	S	Cc	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	.Ho	·Er	Tm	Yb	Lu	
		•		58 -	59	60	61	62	63	64	. 65 .	66 .	. 67	68	69	70	71	
**	Actinid	le Series		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	1
				Th	Pa	U	Np	Pu .	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	

- (.) indicates the mass number of the isotope with the longest half-life.

. 7