DEPARTMENT OF CHEMISTRY

UNIVERSITY OF SWAZILAND

SPECTRO CHEMICAL ANALYSIS

DECEMBER 2013

FINAL EXAMINATION

Time Allowed:

Three (3) Hours

Instructions:

- 1. This examination has six (6) questions and one (1) data sheet. The total number of pages is five (5), including this page.
- 2. Answer any four (4) questions fully; diagrams should be clear, large and properly labeled. Marks will be deducted for improper units and lack of procedural steps in calculations.
- 3. Each question is worth 25 marks.

Special Requirements

1. Data sheet.

2. Graph paper.

.

YOU ARE NOT SUPPOSED TO OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GIVEN BY THE CHIEF INVIGILATOR.

C612

OUESTION 1 [25]

a)	Explain the origins of atmospheric absorptions in infra-red spectroscopy	(2)								
b)	Why are atmospheric absorptions undesirable in IR and how are they eliminated?									
c)) Infra-red instruments operating in the dispersive mode are widely used for qualitative and semi-quar measurements. Explain									
	(i) Why in dispersive IR the sample is placed before the monochromator and not after it?	(2)								
	(ii) Why dispersive IR instruments suffer from poor resolution.	(3)								
	 (iii) Calculate λmax in cm⁻¹, for a Nernst Glower heated to 500K, given its Wein's Displacemen 2.9 x 10⁻³mK. (iv) Explain why the Glower heated to 500 K is at the ideal temperature for use as an IR sour to 10,000K. 									
d)	With regard to IR utilizing a Michaelson interferometer,									
	(i) Use diagrams to explain how the interferometer works.	(4)								
	(ii) Explain the role of the He-Ne laser used in FT-IR.	(2)								
	(iii) What is meant by the "Jacquinot Advantage" in FT-IR?	(2)								
	(iv) What is meant by the "Connes Advantage" in FT-IR?	(2)								
	(v) What is meant by the "Fellget Advantage" in FT-IR?	(2)								

QUESTION 2 [25]

- a) (i) Of the many applications of UV-visible spectroscopy, the determination of mixtures is of considerable interest. Use equations to explain how is this achieved (3)
 - (ii) Use equations to explain how polychromatic radiation gives rise to deviations in Beer's Law (6)
- b) A typical monochromator using a grating is a rectangular block of glass with 1180 lines etched on every mm of its surface. It is 4.6 cm wide.
 - (i) State the Bragg's equation for the grating acting as a monochomator, and calculate the primary angle at which radiation of 650 nm is diffracted when it hits the grating.
 (3)
 - (ii) Calculate the first order resolving power of this grating, and calculate the resolution at 650 nm. (3)
- c) Prisms are widely used in uv-visible spectrometers as monochromators. The base length of a prism is typically 5cm, and the prism material has a dispersion of 2.7 x 10⁻⁵.

(i)	State Snell's law for a prism	(1)
(ii)	Calculate the resolving power of the prism, and the resolution at 5268 A°	(3)
(iii)	Use diagrams to explain the principle of "Resolution As Limited by the Exit Slit" in spectroscopy	(3)

d) There are many applications of uv-visible spectroscopy today. Describe how uv-visible spectroscopy can be used to determine the dissociation constant, Ka, for a weak acid HA.
 (3)

2

QUESTION 3 [25]

Atomic spectral lines are theoretically infinitely narrow, but in reality they have spectral width due to broadening. a) Explain how the following phenomena give rise to broadening

	(i)	Doppler Effect	(3)
	(ii)	Collisional Effect	(3)
b)	Use equ	ations to explain why:	
	(i)	The optical components of spectrometers are always kept in a darkened compartment.	(3)
	(ii)	uv-visible spectroscopic measurements are always taken at λ_{max} rather than at shoulders of spectra.	molecular (4)
c)	Photodie	ode arrays (PDA's) are widely used as dectectors in uv-visible spectroscopy.	
	(i)	Use a diagram to explain how a PDA works.	(4)
	(ii)	What is the major advantage of the PDA over the phototube?	(2)
	(iii)	Given that the signals from a photodiode array detector are in the form of current, which converted to voltage for input into a computer for electronic display, draw the operational array must be used at this stage of signal processing, and state its output.	h must be plifier that (3)

(iv) After computing the voltage ratio from the reference and sample channels in the PDA, and given that the voltage ratio (transmittance) must be converted to absorbance, draw the operational amplifier that must be used at this stage of signal processing, and state its output. (3)

OUESTION 4 [25]

c)

- a) Fourier transform techniques have contributed immensely in spectroscopy. State the Fourier transform integral pair as applied to spectroscopy (2)
- b) The following signals are fed into a Michelson interferometer. In each case, draw the output

(i) Two spectral lines of equal intensity	(2)
(ii)Two spectral lines of different intensity	(2)
(iii) A square wave	(2)
(iv) A gaussian peak	(2)

c) Matrix effects are problematic in atomic spectroscopy. For each of the following spectroscopic techniques, discuss how matrix effects arise, and state how they can be eliminated in each case.

	(i) DC Spark	(3)
	(ii) Flame Atomic Absorption Spectroscopy	(3)
	(iii)Electrothermal Vaporization Atomic Absorption Spectroscopy	(3)
d)	There are certain operational difficulties associated with coupling a quadrupole unit to an ICP.	

- **(i)** Draw a schematic diagram of an ICP-MS instrument that uses a quadrupole unit, showing the ICP-MS interface. (3)
- Explain how the interface works. (3) (ii)

3

OUESTION 5 [25]

a) The dissolution of samples is a major challenge to spectroscopies that rely on nebulisation as a sample introduction system.

(i)With regards to the classical hot plate method,

\mathbf{v}	
Explain the role of H_2SO_4 in oxidation of samples by HNO_3	(l)
Explain why the last step in digesting geological samples usually involves HF	(1)
Discuss the precautions that are necessary when digesting with HClO ₄	(3)
s to the modern methods of analytical dissolution	
Explain why microwave acid digestion is faster than classical methods	(1)
Discuss the mechanism of ultrasonic digestion	(3)
	Explain the role of H ₂ SO ₄ in oxidation of samples by HNO ₃ Explain why the last step in digesting geological samples usually involves HF Discuss the precautions that are necessary when digesting with HClO ₄ is to the modern methods of analytical dissolution Explain why microwave acid digestion is faster than classical methods Discuss the mechanism of ultrasonic digestion

b) The DC Arc emission spectroscopic technique is one of the oldest of such techniques, but the mining industry is now seeing its resurgence in metal analysis.

- (i) Discuss the principles of DC Arc emission spectroscopy using a circuit diagram to illustrate. (4)
- (ii) What are the three (3) main advantages of DC Arc emission spectroscopy over the more recent flame atomic absorption spectroscopy? (3)
- (iii) Discuss the problem of fractional volatization in the DC Arc method, and explain how it is overcome.
- (iv) Fully quantitative DC Arc emission measurements are achieved by means of an internal standard, an old but useful concept for this purpose (Gerlach, ZAnorg Allem. Chem., 142, 383, (1925)). What are the three desirable characteristics of an internal standard, and how are analytes quantified using it?(4)

QUESTION 6 [25]

- a) The AC Spark electrothermal method is widely used in the steel industry.
 - (ii) Discuss the principles of AC Spark emission spectroscopy using a circuit diagram to illustrate. (4)
 - (iii) Discuss any three (3) advantages of AC Spark over DC Arc emission spectroscopy in the determination of Al in steels.
 (3)
- b) Discuss any two (2) advantages of using a photographic plate as a detector in AC Spark emission over a photomultiplier tube. (2)
- c) The inductively Coupled Plasma (ICP) optical emission is now the widely preferred atomic spectroscopic technique.
 - (i) Give a brief description of the ICP as a source of emission signals. (3)
 - (ii) Use a diagram to show why it is possible for the ICP to measure up to 35 elements simultaneously. (3)
 - (iii) State the SAHA equation and explain how temperature measurements in a non-chemical flame of the ICP is carried out using it.
 (3)
 - (iv) How does the "order of magnitude" of the ICP compare with that of the atomic absorption techniques, and what are the implications of this? (3)
- d) Discuss each of the following interferences in ICP-MS

i)	Isobaric interferences	(2)
ii)	Polyatomic interferences	(2)

4

(3)

CHEMISTRY DATA SHEET																					
1. PERIODIC CHART OF THE ELEMENTS																					
1 2				I						13	14	15	16	17		<u>ו</u>	4. NI C	ONST	ANT	S S	•
1A 2A	•				1.00	794	·, ,			34	4A	5A	6A	7A	4.0026		lg(Cl	$N)_2^-$	5	× 10	20 7
								•			ĉ	7 N	i	2	10		$lg(S_2)$	$(1_8)_2^{-1}$ $(0_8)_2^{-1}$	L6 4.7	×10 ×10	13
6.947 9.01218						•	٠,			19.61	12.011	14.0047	15.9994	18.978.40	0 20.179		Ŭ(ÒĒ	I)4-	1.0	× 10	83
	3 4	L 5	6	. 7	8	9	·10	11	12	13 • A I	С.	15 D	16 C	L Z	Р		a (EL ld (Cl	רע(ATC)= א(א	= 1.0 8.3	× 10 × 10	1] 17
22.98977 24.305	B 4	B 5E	6B	78·		-88~		18	28	26.9815	28.0835	30.97376	32.04	35.453	39,94	L Q	N) b'	H ₈) ₄ ++	5.5	× 10	8
K Ca S				25 Mm	26 Fa	27 Co	28 Ni	29 Cu	7		32 Go	.33 Δ ε	34 50	35 Rr	K		ک(N) ۲۰ (OI	H ₈) ₆ +8	2	× 10 ³ × 103	35 28
39.0983 40.08 44.1	559 47.	38 3 0.94	5 51.094	54.7380	55.847	54.9332	38.67	43.546	45.36	49.72	72,59	74.9216	78.96	79.904	\$3.80	┨ӑ	Cu(Cl	N_{4}^{-8}	1	$\times 10^{\circ}$	28
	řŻ	r N	b Mo	Tc	Ru	Rh	Pd	Åa	Ċ		Ś'n	Sh	Te		Xe		Cu(N)	H ₈)₄ ⁺⁺	1.2	× 10	11 48
85.4478 87.62 88.0 R.R. R.A. R	9059 91.	22 92.90	64. 95.94	(96)	101.07	102.9055	106.42	107.8482	112.41	114.82	.118.47	121.75	127.60	126.904	s 131.2	티 i	re(CI	$(N)_{6}^{-4}$	4.0 2.5	$\times 10^{\circ}$	85
Cs Ba L	aÌH	f Te	Ŵ	Re	Ős	ir	Pt	Áu	Hg	ı ti	Pb	Bi	Po	Â	R	ļ	re(SC	ZŇ)++`	10	× 10	8 1 K
132,9055 137.33 138.	9055 178.	49 180.9	79 163.85 5 108	196,207	190.2	192.22	195.08	196.9665	209.59	204.381	207.2	208.9804	(209)	(210)	, (222)	J I	igui Ig(C	ι= N)₄≐	1,3 8.3	× 10 × 10	38
Fr Ra A	c Tu		DUnh	Uns	Uno	Une	A vali	ue in b	iracket	ts deno	tes the s	mass r notone	umber	of		ļĮ	Ig (S	ĊŃ)₄=	= 5.0	× 10	20 :
(223) 228.0264 227.0	0278 (2	1) (295	6 (2653)	(262)	(265)	(206)		mgaar					·				igi ₄ = Ag(E	= DTA):	6.3 = 1.3	× 10 × 10	29 9
Lanthanide		59 Dr						5 L C	66) 7 1	67 4 - 1	68 4 E T		70 / L	7	·		Ni (NI	$(I_8)_4^+$	4.7	× 10	7 :
series	140.12	140.9077	144.24 (1	45) 15	0.36 151	.% 15	7.25 156.	9254 10	2.50 16	HO 1	67.26 164	.9342 1	73.04 17	4.567			?b(O) /n (C)	$(H)_{8}^{-}$	7.9	× 10 × 10	18 16
	%	91 Deal	92 9 11 N	93 9 Jen 0			nn R		98. ~£	99 ' E a		01 1 Rai N	02 1	03			Ln(N)	H ₈) ₄ ⁺⁺	7.8	$\times 10$	8
84162	232.0341	231.03591	238,0287 237	7.0482 P	44 PA	9 2	471 [2	471. 0	281]	(252)	(257) (2	HI (2	59) (2	260)		2	Zn(O)	H) ₄ =	6.3	× 10	14
2. IONI2	ZATIC	ON CO	NSTA	NTS	(K ₄)]	FOR	WEA	K A	CIDS		•	5. FI	RST	ION	IZAT	ION	ENE	RGIE	5, e.v	,	— : .
Acetic		1.9 ×	10-5	. ·	Hypo	chlor	ous. 77	3.7	1 X I	10-8	14	24			14	۰. ٦.				, "	25
2-Amino-	Ion	2 X	10-7		п29		. K		X	10-15	5.4	9,3			•	.		83 11	15 14	17	22
Ammonium I	on	5.6 ×	10-10		Imida	zoliu	m Ior	1.1	ΙX	10-7 10-4	<u>នរ</u>	7.6 38	48 38	68 7	· ·		18 28	6.0 8.1	11 1) 13	16
Anilinium Io	n K.	$2.3 \times$	10-5 10-3		Meth	c ylamı	noniu	m 1.4	• • •	10 -	4.3	6.1 6.6 5.7 6.6	6.8 6.7 7.0 6.8	6.8 7.	4 7.9	7.9 7.6	7.7 9.4	6.0 81 5.8 73	10 9.	8 12 0 10	14
Benzoic		6.7 X	10-5		Ion 2.7×10^{-11}					3.9 5.2 5.0 5.5 6 8.0 7.9 8.7 9.2 9.0 9.2 10 6.1 7.4 8							1 1				
Boric	K ₁	5 X	10-10 10-7		am	moni	um Io	n 3	×	10-10	6. ELECTRONEGA'						TIVITIES. Pauling				
	$-\frac{K_1}{K_2}$	5.6 X	10-11		Nicot	inium	i Ion R	9.0 : 6	⁶ X	10- ⁹ 10-2					21	י ^י ר	• ••			·	÷.,
Chloroacetic	κ.	$15 \times 32 \times$	10-8 10-7		U Addi		K	C ₂ 6	Ŷ	10-5	10	1.5	•				به میرت	20 2.5	30 3.	3 4.0	
Citric	K ₁	8.7 X	10-4		Phene	ol alic	T	1.5 5.4	3 X	10-10 10-6	0.9	1.2 38	4,8 39	68 7		••	18 28	1.5 1.8	2.1 2.	5 3.0	
· .	K ₂ K	$\frac{1.8}{4} \times$	10-5 10-6		Phos	phorie	c I	C ₁ 7.	5 🗘 .	10-8	0.8	<u>ເ</u> ຍ ເມ	15 16	1.6 1.	5 18 1		.1.9 1.6	1.8 1.8	2.0 2	4 2.8	<u> </u>
Dichloroaceti	c	5 X	10-2				ł F	C ₂ 6. C. 4.	$\frac{2}{7} \times$	10 ⁻⁸ 10-18	0.5	0.9 1.1	1.3 1.5	1.7 1.	.9 2.2 2	2.2 2.2	2.4 1.9	1.8 1.8	1.9 2.	0 2.2	1
EDTA	K ₁	$\begin{array}{ccc} 7 & \times \\ 2 & \times \end{array}$	10-8 10-8		Phos	phoro	us Î	ζ, 1	ο Â	10-2							<u> </u>	1 1			·
	K ₈	ž x	10-7		Pyric	liniur	ł n Ion	2 <u>،</u> 2.0 1	6 X	10-7 10-5	•		7. A	TON	IIC R		l pico	meter	5	, ,	ـــــــــــــــــــــــــــــــــــــ
Formic	.K4	6 X. 2 X	_10-11 10-4		Succ	inic	I	ζ 1.7	_ Ŷ	10-5	1A 2	A			37		; D	3A 4A	5A 6A	7A 3	<u>12</u>
α -D(+)-Gluc	cose	5.2 X	10-18		Sulfu	ıric	ł	ς <u>,</u> 2. ς, 1.	5 X 2 X	10-° 10-2	190 10	90 3B 4	18 58 (6B 7B	89	1	B 2B 1	43 132	28 127	99 (7
Glycinium lo	n K ₁ K,	4.6 X 2.5 X	10-3		Sulfu	ITOUS	F	$\zeta_1 2$	ΞŶ.	10-2	235 19	7 162 1	47 134 1	130 135	126 12	5 124 12	28 138 1	41 137	39 140	114 1	10 20
Hydrazinium	Ion	5.9 ×	10-0		Trim	ethyl	_ I	23 0	X	10-0	267 22	2 187 1	67 149 1	141 137	135 13	5 139 14	16 157 1	71 175	170 176	1	45
Hydrocyanic		i x	10-1		am	moni	um Io	n 1.	6 ×	10-10		8. IO	NIC	RAD	II pn	1	9. L	ATTICI	ENE	RGIES	<u> </u>
Hydroxyl-	T	A1	10-7		UFIC WAL	- 77		· I.	<u>3 X</u>	10-1	Li ⁺	60	Sr ⁺²	113	S ⁻²	184	(All	negati	ve)	kJ/m	ıol
annionium	101	9.1 X	10-1		wate	г, л ,	, 24-(~ I.	UX	10-14	Na⊤ K+	95 133	Ba ⁺ ² B ⁺ ³	135 20	Se ⁻⁴	* 198 * 221	Li	F (1030 E	21 B 140 7	r 1 817	18
3	. SOI	UBIL	ITY P	ROD	UCT	CON	STAN	ITS		10.0	Rb+	148	Al+3	50	Ê-	136	Na	914 7	70 7	28 6	81
AgBr AgaCOa	4 × 1 6 × 1	0-18] 0-12]	3aC₂U. 3aSO ₄	4 ² 1	× 10-	10 K	.CIO4 [gCO:	, .	2 X 1 X	10-2	Be ⁺² Mσ ⁺²	31 2 65	N ⁺³	171 212		181		812 7	01 6	71 6 54 6	32 17
AgCl	1×1	0-10	CaCO ₈	5	× 10-	9 N	IgC ₂ C	Š₄	9×	10-5	Ca+2	99	0-2	140	Ī-	216	Cs	744 6	30 6	13 5	85
Ag_2CrO_4	2×1	0-12 (0-12 (CaF ₂	4	× 10-	11 M 9 N	IgNH Ig(OF	404 1)-	2×	10 ⁻¹⁸ 10-11				10.	HA	LF L	IVES				_
AgI_	1×1	0-16	ZdS^{2}	± 1	× 10-	28 N	InS	~/2	îx	10-15	H ⁸	12.3	year	s K	40 1.	28 ×	10 ⁹ y	I 131	8.1	day	'S
Ag ₃ PO ₄	1×1	0-19	Cu(OH	$()_2 = 2$	× 10-	20 P	bCrO	4	2 × 1 ×	10-14	$\begin{bmatrix} \mathbf{F}^{20} \\ \mathbf{C}^{14} \end{bmatrix}$	11.4 5790	secs	יד יד	a ⁴⁵ 659	165 d	lays	Cs ¹⁸	7 30 98 2 4	yea o Ja	rś
AgCNS	1×1	0-12	ວແລ ເre(OH)	$)_{8} 1$	× 10	86 P	°bso₄	. ·	$\hat{2} \times$	10-8	Na ²	4 15.0	hour	s C	080	5	.26 y	Ra ²²	⁶ 16	20 yı	, :S.
AI(OH) ₈	2×1	0-82	Ig ₂ Br ₂	3	× 10-	23 S		4 1)		10-5	P ⁸² S ⁸⁵	14.3	B days	s B	r ⁸² 3	5.5 h	ours	U230 TT28	5 7.1 3 4 51	× 10	³y∵ 9 √ 7
BaCrO ₄	ix1	0-10	ng ₂ Ul ₂ HgS	1 1	× 10 ⁻	52 Z	inS	-/2 i	1×	10-24	Clse	3.1	× 10 ⁵	y I ¹	129 1	$1.7 \times$	10 ⁷ y	Pu ²³	30 24	,400	у У
© Copyrigh	t 1986,	W. E. I	Iarris &	S. G. D	avis		•	. 1	Univer	rsity of	Alberta	, Edm	onton	_	•		Prin	ted in (Canada	L	