UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2013/2014

TITLE OF PAPER:	BIO-INORGANIC CHEMISTRY
COURSE NUMBER:	C617
TIME ALLOWED:	THREE (3) HOURS
INSTRUCTIONS:	ANSWER <u>ALL FOUR (4)</u> QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

1

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

(a) Discuss the roles of the ions of the major elements K⁺, Na⁺ and Ca²⁺ in metabolic processes. In the discussion identify which ions are found within and outside the cells and their relative concentrations. [6]

(b)	Discuss the following topics:	
	(i) Chalation thereasy	

1

- (i)Chelation therapy[3](ii)Imaging agents[3](iii)Zinc proteins as sensors[3]
- (c) Describe the origin of CO toxicity in mammals, including a consideration of the nature of metal-CO bonding. [2]
- (d) (i) Outline the mechanism of the catalytic cycle of cytochrome P-450. [6]

(ii) Why might Copper sensors be 'designed' to bind Cu(I) rather than Cu(II)? [2]

QUESTION TWO

(a)	Discuss the structure of the zinc metalloenzyme carboxypeptidase and outline th mechanism of its function. [5]										
(b)	(i) (ii)	Draw the structure of the porphine ligand. Show how the structure of the porphine ligand	[2½]								
		(1) has been modified in the chlorophyll molecule.	[2]								
		(2) differs from the corrin ring ligand in vitamin B_{12} .	[1½]								
		(3) is related to the heme structure.	[1]								
	(iii)	Eukaryotic cells contain sub-compartments known as organelles. Give									
		functions of the following organelles:									
		(1) Mitochondria	[1]								
		(2) Endoplasmic reticulum	[1]								
		(3) Peroxisomes	[1]								
(c)	(i)	What is the shape and make-up of the manganese complexes utili PSII?	sed in [2]								
	(ii)	Which features of the manganese suit it to function as a redox cen									
		PSII, as opposed to metals such as copper or nickel?	[2]								
(d)	(i)	What is meant by the term <i>zwitterion</i> ?	[1]								
•	(ii)	Describe what is meant by the term primary structure of proteins	. .								
 (ii) What type of bonding between amino acid residues is most im holding a protein or polypeptide in a specific secondary configuration. 											
	 (iv) A globular protein in aqueous surroundings contains the following an acid residues: methionine, lysine, and alanine. Which amino acid chains would be directed toward the inside of the protein and which w be directed toward the aqueous surroundings? [3] 										

QUESTION THREE

- (a) Describe the characteristics of zinc that make it an important element in Biochemistry. Compare these characteristics to those of the other metals found in biological systems.
- (b) The O–O bond lengths in O₂, KO₂ (O_2^-), and BaO₂ ($O_2^{2^-}$) are 1.21, 1.34, and 1.49 Å, respectively. These values provide reference data on the relation between bond length and oxidation state. For the complexes $[Co(CN)_5(O_2)]^{3^-}$, $[(NH_3)_5Co(O_2)Co(NH_3)_5]^{4^+}$, and $[(NH_3)_5Co(O_2)Co(NH_3)_5]^{5^+}$, the O–O bond lengths are 1.24, 1.47, and 1.30 Å, respectively. Comment on the extent of Co to O₂ electron transfer (state number of electrons transferred) in each complex. [3]
- (c) Early attempts to synthesise O_2 -carrying iron-porphyrin models were prevented by the formation of oxidised porphyrin dimers having a μ -O bridge between the iron atoms.
 - (i) Suggest a reaction sequence to account for this observation giving products that include oxo-bridged dinuclear Fe(III) porphyrin species. [4]
 - (ii) Outline <u>three</u> approaches that have been successfully employed to circumvent this problem. [3]
 - (i) What is the function of the metallo-biomolecule, *nitrogenase*? [2]

(ii) Identify the metal(s) that are at the active centres of *nitrogenase*. [1]

(iii) Describe the essential features of the structure of *nitrogenase*. [3]

- (iv) Describe the essential steps in the mechanism of the function of *nitrogenase*. [3]
- (d)

QUESTION FOUR

(a)	Discuss the uptake of O_2 by myoglobin and haemoglobin and its													
	(i)	pH dependency	[3]											
	(ii)	cooperative mechanism	[3]											
	(iii)	effect of partial pressure of O ₂	[3]											
(b)	One	of the problems that has plagued synthetic Chemists in thei	r attempt											

One of the problems that has plagued synthetic Chemists in their attempts to prepare model compounds for cysteine-complexed metal ions in metalloproteins is the easy oxidation of the thiolate anions (RS⁻) to RS-SR. Simple complexes with Cu^{2+} -SR and Fe³⁺-SR bonds that might serve as models for cytochrome P-450 and the ferredoxins are labile because of this reaction. Write balanced equations for the decomposition of $[Cu^{(II)}L_n(SR)]$ and $[Fe^{(III)}L_n(SR)]$. [2]

- (i) What role does Mg play in the functioning of chlorophyll? [2]
 - (ii) Which other metal(s) are involved in photosynthesis in the functioning of chlorophyll? [1½]
 - (iii) Chlorophyll has an absorption maximum at about 660 nm. Calculate the energy available from a photon light at this wavelength. [1½]
 - What electron transfer systems are used in photosynthesis? (iv) [2]
 - (v) Describe the chemical processes that occur during the photosynthesis process. [2]
- (d) What do you understand by 'modelling' of bio-molecules? (i) [1] (ii) Explain how cobalt complexes have provided the best general picture of acting as helpful O₂ binding model systems. [4]

(c)

PERIODIC TABLE OF ELEMENTS

. . .

	GROUPS																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	١٨	AII	IIIB	IVB	VB	VIB	VIIB		VIIIB		· 1B	IIB.	111A	IVA	VA	VIA	VIIA	VIIIA
1	1.008 . 11 1						-	· · ·									•	4.003 11c 2
2	6.941 Li 3	9.012 Be 4		$\begin{array}{c c c c c c c c c c c c c c c c c c c $													20.180 Ne 10	
3	22.990 Na 11	24.305 Mg 12	TRANSITION ELEMENTS											28.086 Si√ 14	30.974 P 15	32.06 S 16	35.453 . Čl 17	39.948 Ar 18
4	39.098 K 19	40.078 Ca 20	44.956 Sc 21	47.88 Ti 22	50.942 V. 23	51.996 Cr 24	54.938 Mn 25	55.847 Fe 26	58.933 Co 27	58.69 Ni 28	63.546 Cu . 29	65.39 - Zn 30	69.723 Ga 31	72.61 Ge 32	74.922 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.468 Rb 37	87.62 Sr 38	88.906 Y 39	91.224 Zr 40	92.906 Nb 41	95.94 Mo 42	98.907 Tc 43	101:07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag -47	112.41 Cd 48	114.82 In 49	118.71 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I .53	131.29 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 *La 57	178.49 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	,190.2 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Tl 81	207.2 Pb 82	208.98 Bi 83	(209) Po 84	(210) At 85	(222) Rn 86
7	223 Fr 87	226.03 Ra 88	(227) **Ac 89	(261) Rf 104	(262) Ha 105	(263) Unh 106	(262) Uns 107	(265) Uno 108	(266) Une 109	(267) Uun 110								
*Lanthanide Series **Actinide Series				140.12 Ce 58 232.04 Th 90	140.91 Pr 59 231.04 Pa 91	144.24 Nd 60 238.03 U 92	(145) Pm 61 237.05 Np 93	150.36 Sm 62 (244) Pu 94	151.96 Eu 63 (243) Am 95	157.25 Gd 64 (247) Cm 96	158.93 Tb 65 (247) Bk 97	162.50 Dy 66 (251) Cf 98	164.93 Ho 67 (252) Es 99	167.26 Er 68 (257) Fm 100	168.93 Tm 69 (258) Md 101	173.04 Yb 70 (259) No 102	174.97 Lu 71 (260) Lr 103	

() indicates the mass number of the isotope with the longest half-life.

,