UNIVERSITY OF SWAZILAND
 SUPPLENENTARY EXAMINATIONS 2014/2015

TITLE OF PAPER: INTRODUCTORY CHEMISTRY
COURSE NUMBER:
C111

TIME ALLOWED:
THREE (3) HOURS

INSTRUCTIONS:
THERE ARE TWO SECTIONS: SECTION A AND SECTION B. ANSWER ALL" THE QUESTIONS IN SECTION A AND ANY TWO QUESTIONS FRON SECTION B.

SECTION A IS WORTH 50 MARKS AND EACH QUESTION IN SECTION B IS WORTH 25 MARKS.

THE ANSWER SHEET FOR SECTION A IS ATTACHED TO THE QUESTION PAPER.GIVE YOUR ANSWERS TO SECTION A QUESTIONS BY CIRCLING THE CORRESPONDING LETTER ON THE ANSWER SHEET.

AT THE END OF THE EXAM,BEFORE YOU LEAVE, PLACE THE ANSWER SHEET INSIDE THE UNISWA ANSWER BOOKLET CONTAINING YOUR ANSWERS TO SECTION B

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

SECTION A

1) Vanadium has two naturally occurring isotopes, 50 V with an atomic mass of 49.9472 amu and 51 V with an atomic mass of 50.9440 . The atomic weight of vanadium is 50.9415. The percent abundances of the vanadium isotopes are \qquad $\% 50 \mathrm{~V}$ and $\% 51 \mathrm{~V}$.
A) $0.25,99.75$
B) $99.75,0.25$
C) 49,51
D) $1.0,99$
E) $99,1.0$
2) An unknown element is found to have three naturally occurring isotopes with atomic masses of $35.9675(0.337 \%), 37.9627(0.063 \%)$, and 39.9624 (99.600%). Which of the following is the unknown element?
A) Ar
B) K
C) Cl
D) Ca
E) None of the above could be the unknown element.
3) In the periodic table, the elements are arranged in \qquad .
A) alphabetical order
B) order of increasing atomic number
C) order of increasing metallic properties
D) order of increasing neutron content
E) reverse alphabetical order
4) Elements \qquad exhibit similar physical and chemical properties.
A) with similar chemical symbols
B) with similar atomic masses
C) in the same period of the periodic table
D) on opposite sides of the periodic table
E) in the same group of the periodic table
5) Which pair of elements would you expect to exhibit the greatest similarity in their physical and chemical properties?
A) H, Li
B) Cs, Ba
C) Ca, Sr
D) Ga, Ge
E) C, O
6) What is the maximum mass in grams of NH 3 that can be produced by the reaction of 1.0 g of N_{2} with 3.0 g of H_{2} via the equation below?
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$ (not balanced)
A) 2.0
B) 1.2
C) 0.61
D) 17
E) 4.0
7) What is the maximum amount in grams of SO_{3} that can be produced by the reaction of 1.0 g of S with 1.0 g of O_{2} via the equation below?
$\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})$ (not balanced)
A) 0.27
B) 1.7
C) 2.5
D) 3.8
E) 2.0
8) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

The maximum amount of $\mathrm{Al}_{2} \mathrm{O}_{3}$ that can be produced from 2.5 g of Al and 2.5 g of O_{2} is
\qquad
A) 9.4
B) 7.4
C) 4.7
D) 5.3
E) 5.0
15) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:
$\mathrm{S}(\mathrm{s})+3 \mathrm{~F}_{3}(\mathrm{~g}) \rightarrow \mathrm{SF}_{6}(\mathrm{~g})$
The maximum amount of SF_{6} that can be produced from the reaction of 3.5 g of sulfur with 4.5 g of fluorine is \qquad g.
A) 12
B) 3.2
C) 5.8
D) 16
E) 8.0
16) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
In a particular experiment, the reaction of 2.5 g of Al with 2.5 g of O_{2} produced 3.5 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$. The \% yield of the reaction is \qquad .
A) 74
B) 37
C) 47
D) 66
E) 26
17) Sulfur and oxygen react in a combination reaction to produce sulfur trioxide, an environmental pollutant:
$2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
In a particular experiment, the reaction of 1.0 g S with $1.0 \mathrm{~g} \mathrm{O}_{2}$ produced 0.80 g of SO_{3}. The \% yield in this experiment is \qquad .
A) 30
B) 29
C) 21
D) 88
E) 48
18) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:

$$
\mathrm{S}(\mathrm{~s})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{SF}_{6}(\mathrm{~g})
$$

In a particular experiment, the percent yield is 79.0%. This means that in this experiment, a $7.90-\mathrm{g}$ sample of fluorine yields \qquad g of SF_{6}.
A) 30.3
B) 10.1
C) 7.99
D) 24.0
E) 0.110
19) Which one of the following is a correct expression for molarity?
A) mol solute $/ \mathrm{L}$ solvent
B) mol solute $/ \mathrm{mL}$ solvent
C) mmol solute $/ \mathrm{mL}$ solution
D) mol solute/kg solvent
E) $\mu \mathrm{mol}$ solute $/ \mathrm{L}$ solution
20) Which one of the following is not true concerning 2.00 L of 0.100 M solution of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
A) This solution contains 0.200 mol of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.
B) This solution contains 0.800 mol of oxygen atoms.
C) 1.00 L of this solution is required to furnish 0.300 mol of Ca^{2+} ions.
D) There are 6.02×10^{22} phosphorus atoms in 500.0 mL of this solution.
E) This solution contains $6.67 \times 10^{-2} \mathrm{~mol}$ of Ca^{2+}.
21) A $0.200 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ solution is produced by \qquad .
A) dilution of 250.0 mL of $1.00 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ to 1.00 L
B) dissolving 43.6 g of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in water and diluting to a total volume of 250.0 mL
C) diluting 20.0 mL of $5.00 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ solution to 500.0 mL
D) dissolving 20.2 g of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in water and diluting to 250.0 mL , then diluting 25.0 mL of this solution to a total volume of 500.0 mL
E) dilution of 1.00 mL of $250 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{3}$ to 1.00 L
22) Which solution has the same number of moles of NaOH as 50.00 mL of 0.100 M solution of NaOH ?
A) 20.00 mL of 0.200 M solution of NaOH
B) 25.00 mL of 0.175 M solution of NaOH
C) 30.00 mL of 0.145 M solution of NaOH
D) 50.00 mL of 0.125 M solution of NaOH
E) 100.00 mL of 0.0500 M solution of NaOH
23) Which solution has the same number of moles of KCl as 75.00 mL of 0.250 M solution of KCl ?
A) 20.0 mL of 0.200 M solution of KCl
B) 25.0 mL of 0.175 M solution of KCl
C) 129 mL of 0.145 M solution of KCl
D) 50.0 mL of 0.125 M solution of KCl
E) 100 mL of 0.0500 M solution of KCl
24) What are the respective concentrations (M) of Fe^{3+} and I^{-}afforded by dissolving 0.200 $\mathrm{mol} \mathrm{FeI}_{3}$ in water and diluting to 725 mL ?
A) 0.276 and 0.828
B) 0.828 and 0.276
C) 0.276 and 0.276
D) 0.145 and 0.435
E) 0.145 and 0.0483
25) What are the respective concentrations (M) of Mg^{+2} and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ - afforded by dissolving $0.600 \mathrm{~mol} \mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$ in water and diluting to 135 mL ?
A) 0.444 and 0.889
B) 0.0444 and 0.0889
C) $0 . .889$ and 0.444
D) 0.444 and 0.444
E) 4.44 and 8.89
26) What are the respective concentrations (M) of Cu^{+2} and Cl - afforded by dissolving 0.200 mol CuCl 2 in water and diluting to 345 mL ?
A) 0.200 and 0.200
B) 0.580 and 1.16
C) 0.200 and 0.400
D) 1.16 and 2.32
E) 0.580 and 0.290
27) A tenfold dilution of a sample solution can be obtained by taking \qquad .
A) 1 part sample and 9 parts solvent
B) 1 part sample and 10 parts solvent
C) 9 parts sample and 1 part solvent
D) 10 parts sample and 1 part solvent
E) 99 parts sample and 1 part solvent
28) Mixing 10.00 mL of an aqueous solution with 10.00 mL of water represents a
\qquad
A) crystallization
B) neutralization
C) twofold dilution
D) tenfold dilution
E) titration
29) You are given two clear solutions of the same unknown monoprotic acid, but with different concentrations. Which statement is true?
A) There is no chemical method designed to tell the two solutions apart.
B) It would take more base solution (per milliliter of the unknown solution) to neutralize the more concentrated solution.
C) A smaller volume of the less concentrated solution contains the same number of moles of the acid compared to the more concentrated solution.
D) If the same volume of each sample was taken, then more base solution would be required to neutralize the one with lower concentration.
E) The product of concentration and volume of the less concentrated solution equals the product of concentration and volume of the more concentrated solution.
30) A 0.100 M solution of \qquad will contain the highest concentration of potassium ions.
A) potassium phosphate
B) potassium hydrogen carbonate
C) potassium hypochlorite
D) potassium iodide
E) potassium oxide
31) The ground-state electron configuration of the element \qquad is $[\mathrm{Kr}] 5 \mathrm{~s}^{1} 4 \mathrm{~d}^{5}$.
A) Nb
B) Mo
C) Cr
D) Mn
E) Tc
32) The ground-state electron configuration of \qquad is $[\operatorname{Ar}] 4 s^{1} 3 d^{5}$.
A) V
B) Mn
C) Fe
D) Cr
E) K
33) Which one of the following configurations depicts an excited oxygen atom?
A) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$
B) $1 s^{2} 2 s^{2} 2 p^{2} 3 s^{2}$
C) $1 s^{2} 2 s^{2} 2 p^{1}$
D) $1 s^{2} 2 s^{2} 2 p^{4}$
E) $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$
34) Which one of the following configurations depicts an excited carbon atom?
A) $1 s^{2} 2 s^{2} 2 p^{1} 3 s^{1}$
B) $1 s^{2} 2 s^{2} 2 p^{3}$
C) $1 s^{2} 2 s^{2} 2 p^{1}$
D) $1 s^{2} 2 s^{2} 3 s^{1}$
E) $1 s^{2} 2 s^{2} 2 p^{2}$
35) How many different principal quantum numbers can be found in the ground state electron configuration of nickel?
A) 2
B) 3
C) 4
D) 5
E) 6
36) The valence shell of the element X contains 2 electrons in a 5 s subshell. Below that shell, element X has a partially filled 4 d subshell. What type of element is X ?
A) main group element
B) chalcogen
C) halogen
D) transition metal
E) alkali metal
37) Atomic radius generally increases as we move \qquad .
A) down a group and from right to left across a period
B) up a group and from left to right across a period
C) down a group and from left to right across a period
D) up a group and from right to left across a period
E) down a group; the period position has no effect
38) Atomic radius generally decreases as we move \qquad .
A) down a group and from right to left across a period
B) up a group and from left to right across a period
C) down a group and from left to right across a period
D) up a group and from right to left across a period
E) down a group; the period position has no effect
39) Of the following, which gives the correct order for atomic radius for $\mathrm{Mg}, \mathrm{Na}, \mathrm{P}, \mathrm{Si}$ and Ar?
A) $\mathrm{Mg}>\mathrm{Na}>\mathrm{P}>\mathrm{Si}>\mathrm{Ar}$
B) $\mathrm{Ar}>\mathrm{Si}>\mathrm{P}>\mathrm{Na}>\mathrm{Mg}$
C) $\mathrm{Si}>\mathrm{P}>\mathrm{Ar}>\mathrm{Na}>\mathrm{Mg}$
D) $\mathrm{Na}>\mathrm{Mg}>\mathrm{Si}>\mathrm{P}>\mathrm{Ar}$
E) $\mathrm{Ar}>\mathrm{P}>\mathrm{Si}>\mathrm{Mg}>\mathrm{Na}$
40) Of the following, which gives the correct order for atomic radius for $\mathrm{Ca}, \mathrm{K}, \mathrm{As}, \mathrm{Ge}$ and Kr ?
A) $\mathrm{Ca}>\mathrm{K}>\mathrm{As}>\mathrm{Ge}>\mathrm{Kr}$
B) $\mathrm{Kr}>\mathrm{Ge}>\mathrm{As}>\mathrm{K}>\mathrm{Ca}$
C) $\mathrm{Ge}>\mathrm{As}>\mathrm{Kr}>\mathrm{K}>\mathrm{Ca}$
D) $\mathrm{K}>\mathrm{Ca}>\mathrm{Ge}>\mathrm{As}>\mathrm{Kr}$
E) $\mathrm{Kr}>\mathrm{As}>\mathrm{Ge}>\mathrm{Ca}>\mathrm{K}$
41) Which one of the following atoms has the largest radius?
A) 0
B) F
C) S
D) Cl
E) Ne
42) Of the compounds below, \qquad has the smallest ionic separation.
A) KF
B) $\mathrm{K}_{2} \mathrm{~S}$
C) RbCl
D) SrBr_{2}
E) RbF
43) \qquad is isoelectronic with argon and \qquad is isoelectronic with neon.
A) $\mathrm{Cl}^{-}, \mathrm{F}^{-}$
B) $\mathrm{Cl}^{-}, \mathrm{Cl}^{+}$
C) $\mathrm{F}+\mathrm{F}^{-}$
D) $\mathrm{Ne}^{-}, \mathrm{Kr}^{+}$
E) $\mathrm{Ne}^{-}, \mathrm{Ar}^{+}$
44) Which of the following is an isoelectronic series?
A) $\mathrm{B}^{5-}, \mathrm{Si}^{4-}, \mathrm{As}^{3-}, \mathrm{Te}^{2-}$
B) $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
C) $\mathrm{S}, \mathrm{Cl}, \mathrm{Ar}, \mathrm{K}$
D) $\mathrm{Si}^{2-}, \mathrm{P}^{2-}, \mathrm{S}^{2-}, \mathrm{Cl}^{2-}$
E) $\mathrm{O}^{2-}, \mathrm{F}-, \mathrm{Ne}, \mathrm{Na}^{+}$
45) Which isoelectronic series is correctly arranged in order of increasing radius?
A) $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Ar}<\mathrm{Cl}^{-}$
B) $\mathrm{Cl}^{-}<\mathrm{Ar}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
C) $\mathrm{Ca}^{2+}<\mathrm{Ar}<\mathrm{K}^{+}<\mathrm{Cl}^{-}$
D) $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Ar}<\mathrm{Cl}^{-}$
E) $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{Ar}$
46) Of the choices below, which gives the order for first ionization energies?
A) $\mathrm{Cl}>\mathrm{S}>\mathrm{Al}>\mathrm{Ar}>\mathrm{Si}$
B) $\mathrm{Ar}>\mathrm{Cl}>\mathrm{S}>\mathrm{Si}>\mathrm{Al}$
C) $\mathrm{Al}>\mathrm{Si}>\mathrm{S}>\mathrm{Cl}>\mathrm{Ar}$
D) $\mathrm{Cl}>\mathrm{S}>\mathrm{Al}>\mathrm{Si}>\mathrm{Ar}$
E) $\mathrm{S}>\mathrm{Si}>\mathrm{Cl}>\mathrm{Al}>\mathrm{Ar}$
47) Atomic radius generally increases as we move \qquad .
A) down a group and from right to left across a period
B) up a group and from left to right across a period
C) down a group and from left to right across a period
D) up a group and from right to left across a period
E) down a group; the period position has no effect
48) Atomic radius generally decreases as we move \qquad .
A) down a group and from right to left across a period
B) up a group and from left to right across a period
C) down a group and from left to right across a period
D) up a group and from right to left across a period
E) down a group; the period position has no effect
49) Of the following, which gives the correct order for atomic radius for $\mathrm{Mg}, \mathrm{Na}, \mathrm{P}, \mathrm{Si}$ and Ar ?
A) $\mathrm{Mg}>\mathrm{Na}>\mathrm{P}>\mathrm{Si}>\mathrm{Ar}$
B) $\mathrm{Ar}>\mathrm{Si}>\mathrm{P}>\mathrm{Na}>\mathrm{Mg}$
C) $\mathrm{Si}>\mathrm{P}>\mathrm{Ar}>\mathrm{Na}>\mathrm{Mg}$
D) $\mathrm{Na}>\mathrm{Mg}>\mathrm{Si}>\mathrm{P}>\mathrm{Ar}$
E) $\mathrm{Ar}>\mathrm{P}>\mathrm{Si}>\mathrm{Mg}>\mathrm{Na}$
50) Of the following, which gives the correct order for atomic radius for $\mathrm{Ca}, \mathrm{K}, \mathrm{As}, \mathrm{Ge}$ and Kr ?
A) $\mathrm{Ca}>\mathrm{K}>\mathrm{As}>\mathrm{Ge}>\mathrm{Kr}$
B) $\mathrm{Kr}>\mathrm{Ge}>\mathrm{As}>\mathrm{K}>\mathrm{Ca}$
C) $\mathrm{Ge}>\mathrm{As}>\mathrm{Kr}>\mathrm{K}>\mathrm{Ca}$
D) $\mathrm{K}>\mathrm{Ca}>\mathrm{Ge}>\mathrm{As}>\mathrm{Kr}$
E) $\mathrm{Kr}>\mathrm{As}>\mathrm{Ge}>\mathrm{Ca}>\mathrm{K}$

SECTION B

Question One

a) Determine the volume, in milliliters, of $3.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ that is needed to make 450 mL of $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.
b) In a titration experiment, 45.7 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is required to neutralize 20.0 mL of NaOH solution. Determine the concentration of the NaOH solution.
c) The quantity of Cl^{-}in a municipal water supply is determined by titrating the sample with Ag^{+}. The precipitation reaction taking place during the titration is

$$
\mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{AgCl}(s)
$$

\therefore The end point in this type of titration is marked by a change in color of a special type of indicator. (i) How many grams of chloride ion are in a sample of the water if 20.2 mL of $0.100 \mathrm{M} \mathrm{Ag}^{+}$is needed to react with all the chloride in the sample? (ii) If the sample has a mass of 10.0 g , what percent Cl^{-}does it contain?
d) Complete and balance the following equation for oxidation-reduction reaction that occurs in basic solution:
$\mathrm{NO}_{2}^{-}(a q)+\mathrm{Al}(s) \rightarrow \mathrm{NH}_{3}(a q)+\mathrm{Al}(\mathrm{OH})_{4}^{-}(a q)$

Question Two

a) Write the electron configuration for phosphorus, element 15. How many unpaired electrons does a phosphorus atom possess?
b) Which family of elements is characterized by an $n s^{2} n p^{2}$ electron configuration in the outermost occupied shell? Give symbols for four of the elements in the family.
c) Based on its position in the periodic table, write the condensed electron configuration for bismuth, whose symbol is Bi. How many unpaired electrons does a bismuth atom have?
d) Use the periodic table to write the condensed electron configuration for (i) Co ii) Te
e) Write the electron configuration for (i) Ca^{2+}, (ii) Co^{3+}, and (iii) S^{2-}.

Question Three

a) Which of the following atoms and ions is largest: $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{O}_{*}^{2-}$?
b) Arrange the ions $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{Ca}^{2}+$, and S^{2-} in order of decreasing size.
c) Which has the lowest first ionization energy, $\mathrm{B}, \mathrm{Al}, \mathrm{C}$, or Si ? Which has the highest?
d) Write the balanced chemical equation for the reaction of solid tetraphosphorus hexoxide, $\mathrm{P}_{4} \mathrm{O}_{6}$, with water.
e) Which substance do you expect to have the greatest lattice energy, $\mathrm{MgF}_{2}, \mathrm{CaF}_{2}$, or ZrO_{2} ?
f) Describe the electron-domain geometry and molecular geometry of XeF_{2}.
g) The cyanate ion, NCO^{-}, has three possible Lewis structures. (i) Draw these three structures and assign formal charges in each. (ii) Which Lewis structure is dominant?

UNIVERSITY OF SWAZILAND

C111 - SUPP EXAMINATION ANSWER SHEET	DATE: JULY 2015
Course Title: Introductory Chemistry ANSWER SHEET FOR SECTION A OF EXAM	Stud.

INSTRUCTION: Place an X over the "box" corresponding to the correct answer
Q. No.

1	A	B	C	D	E		
2	A	B	C	D	E		
3	A	B	C	D	E		
4	A	B	C	D	E		
5	A	B	C	D	E		
6	A	B	C	D	E		
7	A	B	C	D	E		
8	A	B	C	D	E		
9	A	B	C	D	E		
10	A	B	C	D	E		
11	A	B	C	D	E		
12	A	B	C	D	E		
13	A	B	C	D	E		
14	A	B	C	D	E		
15	A	B	C	D	E		
16	A	B	C	D	E		
17	A	B	C	D	E		
18	A	B	C	D	E		
19	A	B	C	D	E		
20	A	B	C	D	E		
21	A	B	C	D	E		
22	A	B	C	D	E		
23	A	B	C	D	E		
24	A	B	C	D	E		
25	A	B	C	D	E		

Q. No.							
26	A	B	C	D	E		
27	A	B	C	D	E		
28	A	B	C	D	E		
29	A	B	C	D	E		
30	A	B	C	D	E		
31	A	B	C	D	E		
32	A	B	C	D	E		
33	A	B	C	D	E		
34	A	B	C	D	E		
35	A	B	C	D	E		
36	A	B	C	D	E		
37	A	B	C	D	E		
38	A	B	C	D	E		
39	A	B	C	D	E		
40	A	B	C	D	E		
41	A	B	C	D	E		
42	A	B	C	D	E		
43	A	B	C	D	E		
44	A	B	C	D	E		
45	A	B	C	D	E		
46	A	B	C	D	E		
47	A	B	C	D	E		
48	A	B	C	D	E		
49	A	B	C	D	E		
$\mathbf{5 0}$	A	B	C	D	E		

58 Ce Cerwan 140.1	$\begin{gathered} 59 \\ \mathbf{P r} \\ \text { Prasodymaisa } \\ 140.9 \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{Na} \\ \text { Weodyum } \\ 144.2 \end{gathered}$	$\begin{gathered} 61 \\ \mathbf{P m} \\ \text { Romentivun } \\ (147) \end{gathered}$	$\underset{\substack{62 \\ \mathrm{Smm}_{\text {smaxim }} \\ 150.4}}{ }$	$\begin{gathered} 63 \\ \text { Eu } \\ \text { Eurbpinn } \\ 1520 \end{gathered}$	$\begin{gathered} \mathbf{6 4} \\ \text { Gd } \\ \text { Gaddimina } \\ 157.3 \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ \text { Tectiven } \\ 158.9 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ \text { Dryposiem } \\ 162.5 \end{gathered}$	67 Ho Hataiam 164.9	$\begin{gathered} 68 \\ \mathbf{E r} \\ \text { Ertivem } \\ 167.3 \end{gathered}$	$\begin{gathered} 69 \\ \mathbf{T m} \\ \text { Thudium } \\ 168.9 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ \text { Ynerbianaia } \\ 173.0 \end{gathered}$	$\begin{gathered} 7 \mathbf{l n} \\ \mathbf{L u} \\ \text { Latiuma } \\ 175.0 \end{gathered}$
90 Th Thainim 232.0	91 $\mathbf{P a}$ fotaciainar (231)	$\begin{gathered} 92 \\ \mathbf{U} \\ \text { Unawn } \\ 238.0 \end{gathered}$	$\begin{gathered} \stackrel{93}{\mathbf{N}} \mathbf{N} \\ \text { Nopkupiun } \\ (237) \end{gathered}$	$\begin{gathered} 94 \\ \mathbf{P u} \\ \text { Prumaum } \\ (242) \end{gathered}$	95 Am Anreicima (243)	$\begin{aligned} & 96 \\ & \mathrm{Cm} \\ & \text { Curnup } \\ & (247) \end{aligned}$	$\begin{gathered} 97 \\ \mathbf{B K} \\ \text { Beterime } \\ (247) \end{gathered}$	$\begin{gathered} .98 \\ \substack{\text { Cfiforium } \\ \text { (249) }} \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ \text { Einsceisimm } \\ (254) \end{gathered}$	100 Fm Pumum (253)	$\begin{gathered} 101 \\ \mathrm{Md} \\ \text { Hendervau } \\ (256) \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ \begin{array}{c} \text { Noxejum } \\ (254) \end{array} \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ \text { Lavatacius } \\ (257) \end{gathered}$

The 1-18 group designation has been recommended by the Intemational Union of Pure and Applied Chemistry (IUPAC) but is not yet in wide use. In this text we use the thand U S notation for group numbers (1A-8A and 1B-8B). No names have been assigned for elements 112, 114, and 116. Elements 113, 115.117, and 118 have not yet been synthesized.

