UNIVERSITY OF SWAZILAND **FINAL EXAMINATION – 2015, MAY**

TITLE OF PAPER

Introductory Chemistry II

COURSE NUMBER

C112

TIME

Three Hours

INSTRUCTIONS

1. Answer all questions in Section A (Total 50 marks)

2. Answer any TWO questions in Section B (each question is 20 marks)

NB: Non-programmable electronic calculators may be used

A data sheet, a periodic table and answer sheet (for Section A) are attached

Useful data and equations:

1 atm = 760 Torr = 760 mmHg

1 atm = 101325 Pa

Arrhenius equation: $k = Ae^{-E_a/RT}$ or $lnk = lnA - \frac{E_a}{RT}$

Van der Walls equation:

This Examination Paper Contains Twelve Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been granted by the Chief Invigilator.

Section A

1.	A 1.44-g sample of an unknown pure gas occupies a temperature of 100.0°C. The unknown gas is	
	A) argon	B) helium
	C) krypton	D) neon
	E) xenon	
2.	What is the enthalpy change (in kJ) of a chemical re solution having a density of 1.25 g/mL by 7.80 °C? (joules/gram-K.)	
	A) -7.43	B) -12.51
	C) 8.20	D) -9.12
	E) 6.51	
3.	The compound below is a(n)	
	H O H H C C C O C H H H	
	A) carboxylic acid	B) ketone
	C) aldehyde	D) ester
	E) amine	0) ester
4.	The rate constant for a second-order reaction is 0.1 0.26 mol/L, it takes s for the concentra A) 0.017 C) 9.1	
_	E) 5.2	uulaa amuakkan
5.	Nitrosyl bromide decomposes according to the follo	owing equation.
	2NOBr (g) \longrightarrow 2NO (g) + Br ₂ (g) A sample of NOBr (0.64 mol) was placed in a 1.00-L	
	flask contained 0.36 mol of NOBr. How many moles	of NO and Br ₂ , respectively, are in the flask at
	equilibrium?	7) 25 40
	A) .28,.28	B) .36,.18
	C) .28,.14	D) .14,.23
_	E) .36,.36	
6.	The volume occupied by 0.50 mol of gas at 35°C and	
	A) 38	B) 6.3
	C) .72	D) .053
_	E) .026	I to the drawn of the same to an all the bands of
7.	The ΔH for the solution process when solid sodium a 10.1-g sample of NaOH dissolves in 250.0 g of war increases from 23.0 °C to °C. Assume the water, i.e., 4.18 J/g-K.	ter in a coffee-cup calorimeter, the temperature
	A) 35.2	B) 24.0
	C) 33.7	D) 33.3
	E) 40.2	9, 55.5
8.		molecules by splitting out a molecule of
	A) alkyne	B) alcohol
	C) ketone	D) aldehyde
	E) olefin	D) didenyde
9.	A first-order reaction has a rate constant of 0.33 mi	
	concentration to decrease from 0.13 M to 0.095 M	
	A) 0.085	B) 0.13

•			
•			
•			
		C) 0.41	D) 1.2
		E) 0.95	
	10.	Which one of the following will change the value of	an equilibrium constant?
		A) changing temperature	
		B) adding other substances that do not react with ar	ny of the species involved in the equilibrium
		C) varying the initial concentrations of reactants	
		D) varying the initial concentrations of products E) changing the volume of the reaction vessel	
	11	A sample of gas (1.9 mol) is in a flask at 21°C and 69°	7 mm Hg. The flask is opened and more gas is
		added to the flask. The new pressure is 782 mm Hg	
		mol of gas in the flask.	
		A) 1.6	B) 2.1
		C) 2.9	D) 3.5
		E) 0.28	
	12.	In the presence of excess oxygen, methane gas burn	is in a constant-pressure system to yield carbon
		dioxide and water:	
		$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$	∆H = -890.0 kJ
		C114 (8) 1 202 (8) 2 21120 (1)	
		Calculate the value of q (kJ) in this exothermic react	ion when 1.70 g of methane is combusted at
		constant pressure.	
		A) -94.6	B) 0.0306
		C) -0.0106	D) 32.7
	4.5	E) -9.46 × 10 ⁴	
	13.	could be the formula of an alkene.	B) C H
		A) C ₃ H ₈ C) C ₆ H ₆	B) C ₃ H ₆ D) C ₁₇ H ₃₆
		E) CH ₈	5) 51/1136
	14.	Nitrogen dioxide decomposes to nitric oxide and ox	ygen via the reaction:
		2NO ₂	
		In a particular experiment at 300 °C, [NO ₂] drops fro	
		appearance of O ₂ for this period isM/s	
		A) 2.3×10^{-5} C) 9.0×10^{-5}	B) 4.5×10^{-5} D) 4.5×10^{-3}
		(0.0×10^{-3})	U) 4.5 × 10
	15	The equilibrium-constant expression depends on the	e of the reaction
	13.	A) stoichiometry	B) mechanism
		C) stoichiometry and mechanism	D) the quantities of reactants and products
		initially present	,
		E) temperature	
	16.	At a temperature of°C, 0.444 mol of CC	•
		A) 379	B) 73.0
		C) 14.0	D) 32.0
	17	E) 116 The value of ΔH° for the reaction below is -126 kJ. The value of ΔH° for the reaction below is -126 kJ.	The amount of heat that is released by the reaction
	1/.	of 20.0 g of Na ₂ O ₂ with water is kJ.	The amount of heat that is released by the reaction
		$2 \text{ Na}_2\text{O}_2 \text{ (s)} + 2 \text{ H}_2\text{O (i)} \longrightarrow 4 \text{Na}$	$OH(s) + O_2(g)$
			7) 00 0
		A) 16.2	B) 32.3
		C) 67.5	D) 64.6
	1Ω	E) -126 The compound below is an	
	10.	H-C=CH-CH ₃	
		it chort ong	
		A) alkyne	B) alkene
		C) alkane	D) aromatic compound
		,	

.

26. If 3.21 mol of a gas occupies 56.2 L at 44°C and 793 torr, 5.21 mol of this gas occupies _____ L under these conditions.

A) 14.7

B) 61.7

D) 91.2

C) 30.9

	E) 478			
27.	The kinetic energy of a 12.5-g obje	ct moving at a sp	peed of 81.9 m/s is J.	
	A) 145	B) 0.950		
	C) 41.9	D) 41900		
	E) 1450			
28.	Alkynes always contain a			
	A) C-C bond	B) C≅C bond		
	C) C=C bond	D) C-H bond		
	E) C≡H bond			
29.			ing the concentration of A by a factor of 3 w	ill
	cause the reaction rate to	·	4	
	A) remain constant		B) increase by a factor of 27	
	C) increase by a factor of 9		D) triple	
	E) decrease by a factor of the cube			
30.	According to the Arrhenius concep		bstance that	
	A) is capable of donating one or m	ore H ⁺		
	B) causes an increase in the concer	ntration of H ⁺ in	aqueous solutions	
	C) can accept a pair of electrons to		•	
		and the second second	ed by autoionization of that solvent	
	E) tastes bitter		•	
31.	A sample of gas (24.2 g) initially at	6.00 atm was co	mpressed from 8.00 L to 2.00 L at constant	
	temperature. After the compressi-	on, the gas press	sure was atm.	
	A) 12.0		B) 16.0	
	C) 18.0		D) 20.0	
	E) 24.0			
32.	Given the data in the table below a	and ΔH° _{rxn} for t	ne reaction	
	$SO_2CI_2(g) + 2 H_2O(I) \rightarrow H_2SO_4(I)$	+ 2HCl (g)	$\Delta H^{\circ} = -62 \text{ kJ}$	
	ΔH°, of HCl (g) iskJ/m	ol.		
	,	Cubetanea	AU . O (I-1/mal)	
		***************************************	ΔH _f ° (kJ/mol)	
		\$O ₂ (g)	-297	
		SO ₃ (g)	-396	
		SO ₂ Cl ₂ (g)	-364	
		$H_2SO_4(I)$	-814	
		H ₂ O (l)	-286	
	A\ 104	•	D) CO	
	A) -184		B) 60	
	C) -92		D) 30	
22	E) Insufficient data are given.	ila hande hatura	en the carbon atoms are called	
33.		ae norias perwe		
	A) alkenes C) aromatics		B) alkynes D) alkanes	
	E) ketones		U) dikalics	
2/1	•	were studied an	d it was determined that the reaction rate	
, J-T.			of B was tripled. The reaction is	order
	in B.	- Jone Handii	or a true diplour file reduction is	, UI WEI
	-			
	$A + B \rightarrow P$			
	A) zero		B) first	
	C) second		D) third	
	E) one-half			
35.	Which one of the following is a Br	Ønsted -Lowry a	cid?	
	A) (CH₃)³NH ⁺		B) CH₃COOH	
			,	

•

	E) all of the above			
36.	Using the van der Waals equation, the	e pressure in a :	22.4 L vessel conf	taining 1.50 mol of chlorine gas
	at 0.00°C is atm. ($a = 6.4$	19 L ² -atm/mol ²	b = 0.0562 L/mg	ol)
	A) 0.993		B) 1.50	,
	C) 0.676		D) 1.91	
	E) 1.48			
37.	Given the following reactions			
٥,,	$N_2(g) + O_2(g) \rightarrow 2NO(g)$	$\Delta H = +180.7$	ki	
		$\Delta H = -163.2$		
	the enthalpy of reaction for	DIT 100.2		
	the character for	2 N ₂ O (σ) →	2NO (g) + N ₂ (g	1
		2 1120 (8)	2110 (8) 1 112 (8	ı
	is kJ.			
	A) 145.7		B) 343.9	
	C) -343.9		D) 17.5	
	E) -145.7		2, 27.13	
38	Hybridization of the carbon atom ind	icated by (*) in	CH* CH CH. *	CHa CHa and CH. *C=CH is
<i>5</i> 0.				chzechz, and chis cechnis
	, and A) sp ³ , sp ² , sp	, respect	ively. B) sp³, sp, sp²	_
	A) sp , sp , sp3	, respect	B) sp , sp, sp	•
	C) sp, sp ² , sp ³		u) sp, sp , sp	
20	E) sp ² , sp ³ , sp			Ale a conservation and
39.	The overall order of a reaction is 2. The overall order	ne units of the r		the reaction are
	A) M/s		B) M ⁻¹ s ⁻¹	
	C) 1/s		D) 1/M	
••	E) s/M ²			
40.	In basic solution,			
	A) [H₃O ⁺] = [OH⁻]		B) [H ₃ O ⁺] > [OH	-]
	C) [H ₃ O ⁺] < [OH⁻]		D) $[H_3O^+] = 0 M$	
	E) [OH ⁻] > 7.00			
41.	CO (5.00 g) and CO ₂ (5.00 g) were pla	ced in a 750.0 r	nl container at 5	0.0°C. The partial pressure of CO
	in the container was atm			
	A) 6.29		B) 4.02	
	C) 10.3		D) 0.292	
	E) 1.60		-,	
42.	Given the following reactions			
	$N_2(g) + O_2(g) \rightarrow 2NO(g)$	$\Delta H = +1$	80.7 kJ	
	$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$	ΔH = -13	13.1 kJ	
	the enthalpy for the decomposition of	of nitrogen diox	ide into molecula	ar nitrogen and oxygen
	$2NO_2(g) \rightarrow N_2(g) + 2O_2(g)$			
			₄ 1	
	iskJ.			
	A) 67.6		B) -67.6	
	C) 293.8		D) -293.8	
	E) 45.5			
43.	Which structure below is not correct	ly drawn?		· _
				<u> </u>
				_с—он
	$CH_3CH_2 \longrightarrow O \longrightarrow CH_3CH_2$	H ₂ CH ₃	В)	\smile
	0		ь,	0
	CH ₃ CH ₂ C			CH-CH-
	· `			() · · · · · · · · · · · · · · · · · ·
	C) H		D)	\sim

D) HNO₂

C) HF

E)
44. If the rate law for the reaction

2A + 3B → products

	is second order in A and first order in B, then the rat	e law is rate =
	A) k[A][B]	B) k[A] ² [B] ³
	C) k[A][B] ²	D) k[A] ² [B]
	E) $k[A]^2[B]^2$,
45.	Nitric acid is a strong acid. This means that	<i>.</i>
	A) aqueous solutions of HNO ₃ contain equal concent	
	B) HNO ₃ does not dissociate at all when it is dissolve	
	C) HNO ₃ dissociates completely to H ⁺ (aq) and NO ₃ ⁻ (
	D) HNO ₃ produces a gaseous product when it is neut	•
	E) HNO ₃ cannot be neutralized by a weak base	i anzeu
16	A gas mixture of N ₂ and CO ₂ has a total pressure of 8	00 atm and contains 12.5 mol of gas. If the
40.	partial pressure of N_2 and CO_2 has a total pressure of CO_2 partial pressure of CO_2 has a total pressure of $CO_$	
	A) 5.77	B) 3.69
	C) 4.31	D) 11.0
	E) 6.73	<i>b</i>) 11.0
47	The temperature of a 15-g sample of lead metal incr	cases from 22 °C to 27 °C upon the addition of
47.	29.0 J of heat. The specific heat capacity of the lead	
	A) 7.8	B) 1.9
	C) 29	D) 0.13
	E) -29	0/0.13
10	Which of the following compounds do <u>not</u> contain a	n cn ³ hybridizad ayygan atam?
40.	A) ketones	B) alcohols
	C) ethers	D) esters
-	E) water	D) esters
40	A reaction was found to be second order in carbon r	manavida cancantration. The rate of the reaction
₹3.	if the [CO] is doubled, with everything e	
	A) doubles	B) remains unchanged
	C) triples	D) increases by a factor of 4
	E) is reduced by a factor of 2	b) increases by a factor of 4
50	Which one of the following is the weakest acid?	
50.	A) HF ($K_a = 6.8 \times 10^{-4}$)	B) HCIO $(K_a = 3.0 \times 10^{-8})$
	C) HNO ₂ ($K_a = 4.5 \times 10^{-4}$)	D) HCN $(K_a = 4.9 \times 10^{-10})$
	-	D) 11CH (N ₈ - 4.3 ^ 10)
	E) Acetic acid ($K_2 = 1.8 \times 10^{-5}$)	

Section B

Question 1

- a) Name any six classes of organic compounds (3)
- Give the functional group and a named example for each of the classes of compounds named above.
- c) Draw all the structural and geometric isomers of pentene, C₅H₁₀, that have an unbranched hydrocarbon chain. (3)
- d) Name the following compounds (8)

ii) ii)
$$\begin{array}{c} & & & & \\ & &$$

Question 2

vii)

- a) State whether the following statements are true or false:
 - i) In an exothermic equilibrium reaction, increasing the reaction temperature favors the formation of reactants.

viii)

CH3CH2CHCHCH2CI

ĊH(CH₃)₂

- At constant temperature, reducing the volume of a gaseous equilibrium mixture causes the reaction to shift in the direction that increases the number of moles of gas in the system
- iii) The effect of a catalyst on a chemical reaction is to react with product, effectively removing it and shifting the equilibrium to the right. Work equals force times distance.
- iv) One joule equals 1 kg m²/s². A gas is considered "ideal" if one mole of it in a one-liter container exerts a pressure of exactly 1 atm at room temperature.
- v) According to the kinetic-molecular theory, molecules of different gases at the same temperature always have the same average kinetic energy.

- vi) Two deviations of real gases from ideal gases which are treated in the van der Waals equation are finite molecular volume and non-zero molecular attractions.
- vii) The instantaneous rate of a reaction can be read directly from the graph of molarity versus time at any point on the graph.
- viii) The overall reaction order is the sum of the orders of each reactant in the rate law.
- ix) The half-life for a first order rate law depends on the starting concentration.
- x) An acid containing the COOH group is called a carbo-oxy acid.

Question 3

a) What does Hess's Law state?

(2)

 b) Given the following standard enthalpy changes of formation, calculate the standard enthalpy change of combustion of silane, SiH₄ at 298 K: (6)

SiH₄(g)	+ 2O _{2(g)} -		$O_{2(g)}$	+ 2H ₂ O _(i)
	Substance	SiH _{4(g)}	SiO _{2(g)}	2H ₂ O _(I)
	ΔH° _f (KJ/mol)	+34.0	-910.9	-285.8

c) From the following equations and their corresponding standard enthalpy changes, calculate the ΔH°_{rxn} , for the following reaction at 298 K. (6)

- d. In the first step in the industrial process for making nitric acid, ammonia reacts with oxygen in the presence of a suitable catalyst to form nitric oxide and water vapor:
 - $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}_{(g)} + 6 \text{H}_2 \text{O}_{(g)}$

How many liters of $NH_{3(g)}$ at 850 °C and 5.00 atm are required to react with 3.50 M of $O_2(g)$ in this reaction?

SI Units and Conversions

Unit	Symbol	SI units
Newton	N	kg.m.s ⁻²
Pascal	Pa	kg.m ⁻¹ .s ⁻² or N.m ⁻²
Joule	J	kg.m ² .s ⁻² or N.m or AVs
Watt	W	kg.m ² .s ⁻³ or J.s ⁻¹
Coulomb	С	A.s
Volt	V	kg.m ² .s ⁻³ .A ⁻¹ or J.C ⁻¹
Ohm	Ω	$kg.m^2.s^{-3}.A^{-2}$ or $v.A^{-1}$
Amp	Α	1Cs ⁻¹

Pressure Units and conversion factors

Pa	I Pa = 1 N.m ⁻²
Bar	1 bar = 10 ⁵ Pa
Atmosphere	1 atm = 101.325 kPa
Torr	760 Torr = 1 atm
	760 Torr = 760 mmHg= 101.325 kPa

General data and Fundamental Constants

General data and i dindamental constants							
Gas constant	R	8.314 51 J.K ⁻¹ .mol ⁻¹ 8.314 51 x 10 ⁻² L.bar.K ⁻¹ .mol ⁻¹ 8.205 78 x 10 ⁻² L.atm.K ⁻¹ .mol ⁻¹					
		62.364 L.Torr.K ⁻¹ .mol ⁻¹					
Avogadro constant	N _A	6.022169 x 10 ²³ mol ⁻¹					
Molar volume of an ideal gas at 0°C and 1 atm	V _m	22.414 dm ³					

UNIVERSITY OF SWAZILAND

Department of Chemistry

1	1
H 1.0079	
3	4
Li 6.941	Be 9.0122
11	12
Na 22.990	Mg 24.305
19	20
K 39.098	Ca
37	38
Rb 85.47	Sr 87.62
55	56
. Cs	Ba 137.33
87	88
Fr	Ra
(223)	226.03

												4	.0026	Αt	omic W	eig	ght		
21		22		23		24		25		26		27		28		29		30	
	Sc	7	Γi		\mathbf{V}	(Cr	1	Mn		Fe		Co		Ni		Cu	,	Zn
	44.956		47.88		50.942		51.996		54.938		55.847		58.933		58.69		63.546		65.39
39		40		41		42		43		44		45		46		47		48	
	Y	Z	Zr		Nb		Mo		Tc		Ru		Rh		Pd		Ag		Cd
	88.906		91.224		92.906		95.94		(98)		101.07		102.91		106.42		107.87		112.41
57		72		73		74		75		76		77		78		79		80	
	La	ŀ	If		Ta		\mathbf{W}		Re		Os		Ir		Pt		Au]	Hg
	138.91		178.49		180.95		183.85		186.2		190.2		192.22		195.08		196.97	ĺ	200.59
89																			
	Ac																		

Atomic Number

						He 4.0026
5	B 10.811	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.179
13	Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.064	17 Cl 35.453	Ar 39,948
31	Ga 69.723	32 Ge 72.61	33 As 74.922	34 Se 78.96	35 Br 79.904	85 Kr 83.80
49	In 114.82	50 Sn 118.71	51 Sb 121.75	Te 127.60	53 I 126.90	54 Xe 131.29
81	Tl 204.38	82 Pb 207.2	Bi 208.98	84 Po (209)	85 At (210)	Rn (222)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.12	140.91	144.24	146.92	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(234)	(247)	1	(251)	(252)	(257)	(258)	(259)	(260)