## UNIVERSITY OF SWAZILAND

FINAL EXAMINATION - 2015, MAY

TITLE OF PAPER : Introductory Chemistry II

## COURSE NUMBER : C112

TIME : Three Hours

## INSTRUCTIONS

1. Answer all questions in Section $\mathbf{A}$ (Total 50 marks)
2. Answer any TWO questions in Section $B$ (each question is 20 marks)

NB: Non-programmable electronic calculators may be used
A data sheet, a periodic table and answer sheet (for Section A) are attached

Useful data and equations:
1 atm $=760$ Torr $=760 \mathrm{mmHg}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}$
Arrhenius equation: $k=A e^{-E_{a} / R T} \quad$ or $\quad \ln k=\ln A-\frac{E_{a}}{R T}$
Van der Walls equation:

$$
P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}
$$

This Examination Paper Contains Twelve Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been granted by the Chief Invigilator.

Section A

1. A 1.44 -g sample of an unknown pure gas occupies a volume of 0.335 L at a pressure of 1.00 atm and a temperature of $100.0^{\circ} \mathrm{C}$. The unknown gas is $\qquad$ _.
A) argon
B) helium
C) krypton
D) neon
E) xenon
2. What is the enthalpy change (in kJ ) of a chemical reaction that raises the temperature 250.0 mL of solution having a density of $1.25 \mathrm{~g} / \mathrm{mL}$ by $7.80^{\circ} \mathrm{C}$ ? (The specific heat of the solution is 3.74 joules/gram-K.)
A) -7.43
B) -12.51
C) 8.20
D) -9.12
E) 6.51
3. The compound below is a(n) $\qquad$ .

A) carboxylic acid
B) ketone
C) aldehyde
D) ester
E) amine
4. The rate constant for a second-order reaction is $0.13 \mathrm{M}^{-1} \mathrm{~S}^{-1}$. If the initial concentration of reactant is $0.26 \mathrm{~mol} / \mathrm{L}$, it takes $\qquad$ $s$ for the concentration to decrease to $0.11 \mathrm{~mol} / \mathrm{L}$.
A) 0.017
B) 0.68
C) 9.1
D) 40 .
E) 5.2
5. Nitrosyl bromide decomposes according to the following equation.

$$
2 \mathrm{NOBr}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

A sample of $\mathrm{NOBr}(0.64 \mathrm{~mol})$ was placed in a $1.00-\mathrm{L}$ flask containing no NO or $\mathrm{Br}_{2}$. At equilibrium the flask contained 0.36 mol of NOBr . How many moles of NO and $\mathrm{Br}_{2}$, respectively, are in the flask at equilibrium?
A) $.28, .28$
B) $.36,18$
C) $.28,14$
D) $.14, .23$
E) $.36,36$
6. The volume occupied by 0.50 mol of gas at $35^{\circ} \mathrm{C}$ and 2.0 atm pressure is $\qquad$ L.
A) 38
B) 6.3
C) .72
D) .053
E) .026
7. The $\Delta H$ for the solution process when solid sodium hydroxide dissolves in water is $44.4 \mathrm{~kJ} / \mathrm{mol}$. When a 10.1 -g sample of NaOH dissolves in 250.0 g of water in a coffee-cup calorimeter, the temperature increases from $23.0^{\circ} \mathrm{C}$ to $\qquad$ ${ }^{\circ} \mathrm{C}$. Assume that the solution has the same specific heat as liquid water, i.e., $4.18 \mathrm{~J} / \mathrm{g}-\mathrm{K}$.
A) 35.2
B) 24.0
C) 33.7
D) 33.3
E) 40.2
8. Ethers can be made by condensation of two $\qquad$ molecules by splitting out a molecule of water.
A) alkyne
B) alcohol
C) ketone
D) aldehyde
E) olefin
9. A first-order reaction has a rate constant of $0.33 \mathrm{~min}^{-1}$. It takes $\qquad$ $\min$ for the reactant concentration to decrease from 0.13 M to 0.095 M .
A) 0.085
B) 0.13
C) 0.41
D) 1.2
E) 0.95
10. Which one of the following will change the value of an equilibrium constant?
A) changing temperature
B) adding other substances that do not react with any of the species involved in the equilibrium
C) varying the initial concentrations of reactants
D) varying the initial concentrations of products
E) changing the volume of the reaction vessel
11. A sample of gas ( 1.9 mol ) is in a flask at $21^{\circ} \mathrm{C}$ and 697 mm Hg . The flask is opened and more gas is added to the flask. The new pressure is 782 mm Hg and the temperature is now $26^{\circ} \mathrm{C}$. There are now
$\qquad$ mol of gas in the flask.
A) 1.6
B) 2.1
C) 2.9
D) 3.5
E) 0.28
12. In the presence of excess oxygen, methane gas burns in a constant-pressure system to yield carbon dioxide and water:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$$
\Delta H=-890.0 \mathrm{~kJ}
$$

Calculate the value of $q(\mathrm{~kJ})$ in this exothermic reaction when 1.70 g of methane is combusted at constant pressure.
A) -94.6
B) 0.0306
C) -0.0106
D) 32.7
E) $-9.46 \times 10^{4}$
13. $\qquad$ could be the formula of an alkene.
A) $\mathrm{C}_{3} \mathrm{H}_{8}$
B) $\mathrm{C}_{3} \mathrm{H}_{6}$
C) $\mathrm{C}_{6} \mathrm{H}_{6}$
D) $\mathrm{C}_{27} \mathrm{H}_{36}$
E) $\mathrm{CH}_{8}$
14. Nitrogen dioxide decomposes to nitric oxide and oxygen via the reaction:
$2 \mathrm{NO}_{2} \longrightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$
In a particular experiment at $300^{\circ} \mathrm{C},\left[\mathrm{NO}_{2}\right]$ drops from 0.0100 to 0.00550 M in 100 s . The rate of appearance of $\mathrm{O}_{2}$ for this period is $\qquad$ $\mathrm{M} / \mathrm{s}$.
A) $2.3 \times 10^{-5}$
B) $4.5 \times 10^{-5}$
C) $9.0 \times 10^{-5}$
D) $4.5 \times 10^{-3}$
E) $9.0 \times 10^{-3}$
$\qquad$ of the reaction.
15. The equilibrium-constant expression depends on the
A) stoichiometry
B) mechanism
C) stoichiometry and mechanism
D) the quantities of reactants and products initially present
E) temperature
16. At a temperature of $\qquad$ ${ }^{\circ}{ }^{\circ} \mathrm{C}, 0.444$ mol of CO gas occupies 11.8 L at 912 torr.
A) 379
B) 73.0
C) 14.0
D) 32.0
E) 116
17. The value of $\Delta H^{\circ}$ for the reaction below is -126 kJ . The amount of heat that is released by the reaction of 20.0 g of $\mathrm{Na}_{2} \mathrm{O}_{2}$ with water is $\qquad$ kJ .

$$
2 \mathrm{Na}_{2} \mathrm{O}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow 4 \mathrm{NaOH}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})
$$

A) 16.2
B) 32.3
C) 67.5
D) 64.6
E) -126
18. The compound below is an $\qquad$ .

$$
\mathrm{H}-\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}
$$

A) alkyne
B) alkene
C) alkane
D) aromatic compound
E) olefin
19. The graph shown below depicts the relationship between concentration and time for the following chemical reaction.


The slope of this line is equal to $\qquad$ .
A) $k$
B) $-1 / k$
C) $\ln [A]_{0}$
D) $-k$
E) $1 / k$
20. The equilibrium constant for reaction 1 is $K$. The equilibrium constant for reaction 2 is $\qquad$ .
(1) $\mathrm{SO}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{3}(\mathrm{~g})$
(2) $2 \mathrm{SO}_{3}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
A) $K^{2}$
B) 2 K
C) $1 / 2 \mathrm{~K}$
D) $1 / K^{2}$
E) $-K^{2}$
21. A sample of He gas ( 2.35 mol ) occupies 57.9 L at 300.0 K and 1.00 atm . The volume of this sample is
$\qquad$ $L$ at 423 K and 1.00 atm .
A) 0.709
B) 41.1
C) 81.6
D) 1.41
E) 57.9
22. The value of $\Delta E$ for a system that performs 168 kJ of work on its surroundings and loses 79 kJ of heat is $\qquad$ kJ .
$\begin{array}{ll}\text { A) }+247 & \text { B) }-247 \\ \text { C) }+55 & \text { D) }-55\end{array}$
C) +55
D) -55
E) -168
23. Gasoline and water do not mix because gasoline is $\qquad$ .
A) less dense than water
B) less viscous than water
C) nonpolar and water is polar
D) volatile and water is not
E) polar and water is nonpolar
24. The following reaction occurs in aqueous solution:

$$
\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-} \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

The data below is obtained at $25^{\circ} \mathrm{C}$.

| $\left[\mathrm{NH}_{4}{ }^{+}\right](\mathrm{M})$ | $\left[\mathrm{NO}_{2}^{-}\right](\mathrm{M})$ | Initial rate $(\mathrm{M} / \mathrm{s})$ |
| :---: | :---: | :---: |
| 0.0100 | 0.200 | $3.2 \times 10^{-3}$ |
| 0.0200 | 0.200 | $6.4 \times 10^{-3}$ |

The order of the reaction in $\mathrm{NH}_{4}{ }^{+}$is $\qquad$ .
A) -2
B) -1
C) +2
D) +1
E) 0
25. The equilibrium expression for $K_{p}$ for the reaction below is $\qquad$ $\therefore$
$2 \mathrm{O}_{3}(\mathrm{~g}) \longrightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$
A) $\frac{3 \mathrm{PO}_{2}}{2 \mathrm{PO}_{3}}$
в) $\frac{2 \mathrm{PO}_{3}}{3 \mathrm{PO}_{2}}$
c) $\frac{3 \mathrm{PO}_{3}}{2 \mathrm{PO}_{2}}$
D) $\frac{\mathrm{PO}_{3}{ }^{2}}{\mathrm{PO}_{2}{ }^{2}}$
E) $\frac{\mathrm{PO}_{2}{ }^{3}}{\mathrm{PO}_{3}{ }^{2}}$
26. If 3.21 mol of a gas occupies 56.2 L at $44^{\circ} \mathrm{C}$ and 793 torr, 5.21 mol of this gas occupies $\qquad$ L under these conditions.
A) 14.7
B) 61.7
C) 30.9
D) 91.2
E) 478
27. The kinetic energy of a $12.5-\mathrm{g}$ object moving at a speed of $81.9 \mathrm{~m} / \mathrm{s}$ is $\qquad$ J.
A) 145
B) 0.950
C) 41.9
D) 41900
E) 1450
28. Alkynes always contain a $\qquad$ .
A) C-C bond
B) $\mathrm{C} \equiv \mathrm{C}$ bond
C) $\mathrm{C}=\mathrm{C}$ bond
D) $\mathrm{C}-\mathrm{H}$ bond
E) $C \equiv \mathrm{H}$ bond
29. A reaction was found to be zero order in A. Increasing the concentration of A by a factor of 3 will cause the reaction rate to $\qquad$ -.
A) remain constant
B) increase by a factor of 27
C) increase by a factor of 9
D) triple
E) decrease by a factor of the cube root of 3
30. According to the Arrhenius concept, an acid is a substance that $\qquad$ .
A) is capable of donating one or more $\mathrm{H}^{+}$
B) causes an increase in the concentration of $\mathrm{H}^{+}$in aqueous solutions
C) can accept a pair of electrons to form a coordinate covalent bond
D) reacts with the solvent to form the cation formed by autoionization of that solvent
E) tastes bitter
31. A sample of gas ( 24.2 g ) initially at 6.00 atm was compressed from 8.00 Lं to 2.00 L at constant temperature. After the compression, the gas pressure was $\qquad$ atm.
A) 12.0
B) 16.0
C) 18.0
D) 20.0
E) 24.0
32. Given the data in the table below and $\Delta H^{\circ}{ }_{r \times n}$ for the reaction

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})+2 \mathrm{HCl}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-62 \mathrm{~kJ}
$$

$\Delta H^{\circ}$ of $\mathrm{HCl}(\mathrm{g})$ is $\qquad$ $\mathrm{kJ} / \mathrm{mol}$.

| Substance | $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{kJ} / \mathrm{mol})$ |
| :--- | :--- |
| $\mathrm{SO}_{2}(\mathrm{~g})$ | -297 |
| $\mathrm{SO}_{3}(\mathrm{~g})$ | -396 |
| $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ | -364 |
| $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})$ | -814 |
| $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | -286 |

A) -184
B) 60
C) -92
D) 30
E) Insufficient data are given.
33. Hydrocarbons containing only single bonds between the carbon atoms are called $\qquad$ .
A) alkenes
B) alkynes
C) aromatics
D) alkanes
E) ketones
34. The kinetics of the reaction below were studied and it was determined that the reaction rate increased by a factor of 9 when the concentration of $B$ was tripled. The reaction is $\qquad$ order in $B$.

$$
A+B \rightarrow P
$$

A) zero
B) first
C) second
D) third
E) one-half
35. Which one of the following is a $\mathrm{Br} \varnothing$ nsted -Lowry acid?
A) $\left(\mathrm{CH}_{3}\right)^{3} \mathrm{NH}^{+}$
B) $\mathrm{CH}_{3} \mathrm{COOH}$
C) HF
D) $\mathrm{HNO}_{2}$
E) all of the above
36. Using the van der Waals equation, the pressure in a 22.4 L vessel containing 1.50 mol of chlorine gas at $0.00^{\circ} \mathrm{C}$ is $\qquad$ atm. $\left(a=6.49 \mathrm{~L}^{2}-\mathrm{atm} / \mathrm{mol}^{2}, b=0.0562 \mathrm{~L} / \mathrm{mol}\right)$
A) 0.993
B) 1.50
C) 0.676
D) 1.91
E) 1.48
37. Given the following reactions
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$

$$
\Delta H=+180.7 \mathrm{~kJ}
$$

$2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{~N}_{2}(\mathrm{~g})$
$\Delta H=-163.2 \mathrm{~kJ}$
the enthalpy of reaction for

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$

is $\qquad$ kJ.
A) 145.7
B) 343.9
C) -343.9
D) 17.5
E) -145.7
38. Hybridization of the carbon atom indicated by (*) in $\mathrm{CH}_{3}{ }^{*} \mathrm{CH}_{2}-\mathrm{CH}_{3},{ }^{*} \mathrm{CH}_{2}=\mathrm{CH}_{2}$, and $\mathrm{CH}_{3}{ }^{*} \mathrm{C}=\mathrm{CH}$ is

and $\qquad$ respectively.
A) $s p^{3}, s p^{2}, s p$
B) $s p^{3}, s p, s p^{2}$
C) $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}{ }^{3}$
D) $\mathrm{sp}, \mathrm{sp}^{3}, \mathrm{sp}^{2}$
E) $s p^{2}, s p^{3}, s p$
39. The overall order of a reaction is 2 . The units of the rate constant for the reaction are $\qquad$ .
A) $\mathrm{M} / \mathrm{s}$
B) $\mathrm{M}^{-1} \mathrm{~s}^{-1}$
C) $1 / \mathrm{s}$
D) $1 / \mathrm{M}$
E) $\mathrm{s} / \mathrm{M}^{2}$
40. In basic solution, $\qquad$ .
A) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
B) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
C) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
D) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0 \mathrm{M}$
E) $\left[\mathrm{OH}^{-}\right]>7.00$
41. $\mathrm{CO}(5.00 \mathrm{~g})$ and $\mathrm{CO}_{2}(5.00 \mathrm{~g})$ were placed in a 750.0 mL container at $50.0^{\circ} \mathrm{C}$. The partial pressure of CO in the container was $\qquad$ atm.
A) 6.29
B) 4.02
C) 10.3
D) 0.292
E) 1.60
42. Given the following reactions
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
$\Delta H=+180.7 \mathrm{~kJ}$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
$\Delta H=-113.1 \mathrm{~kJ}$
the enthalpy for the decomposition of nitrogen dioxide into molecular nitrogen and oxygen $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
is $\qquad$ kJ .
A) 67.6
B) -67.6
C) 293.8
D) -293.8
E) 45.5
43. Which structure below is not correctly drawn?
A)

C)

B)

D)

E)

44. If the rate law for the reaction

## $2 A+3 B \rightarrow$ products

is second order in A and first order in B , then the rate law is rate $=$ $\qquad$ -.
A) $k[A][B]$
B) $k[A]^{2}[B]^{3}$
C) $k[A][B]^{2}$
D) $k[A]^{2}[B]$
E) $k[A]^{2}[B]^{2}$
45. Nitric acid is a strong acid. This means that $\qquad$ .
A) aqueous solutions of $\mathrm{HNO}_{3}$ contain equal concentrations of $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$
B) $\mathrm{HNO}_{3}$ does not dissociate at all when it is dissolved in water
C) $\mathrm{HNO}_{3}$ dissociates completely to $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{NO}_{3}^{-}(\mathrm{aq})$ when it dissolves in water
D) $\mathrm{HNO}_{3}$ produces a gaseous product when it is neutralized
E) $\mathrm{HNO}_{3}$ cannot be neutralized by a weak base
46. A gas mixture of $\mathrm{N}_{2}$ and $\mathrm{CO}_{2}$ has a total pressure of 8.00 atm and contains 12.5 mol of gas. If the partial pressure of $\mathrm{N}_{2}$ is 3.69 atm , how many moles of $\mathrm{CO}_{2}$ are in the mixture?
A) 5.77
B) 3.69
C) 4.31
D) 11.0
E) 6.73
47. The temperature of a $15-\mathrm{g}$ sample of lead metal increases from $22^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$ upon the addition of 29.0 J of heat. The specific heat capacity of the lead is $\qquad$ J/g-K.
A) 7.8
B) 1.9
C) 29
D) 0.13
E) -29
48. Which of the following compounds do not contain an $\mathrm{sp}^{3}$ hybridized oxygen atom?
A) ketones
B) alcohols
C) ethers
D) esters
E) water
49. A reaction was found to be second order in carbon monoxide concentration. The rate of the reaction
$\qquad$ if the [CO] is doubled, with everything else kept the same.
A) doubles
B) remains unchanged
C) triples
D) increases by a factor of 4
E) is reduced by a factor of 2
50. Which one of the following is the weakest acid?
A) $\mathrm{HF}\left(\mathrm{K}_{\mathrm{e}}=6.8 \times 10^{-4}\right)$
B) $\mathrm{HClO}\left(\mathrm{K}_{\mathrm{a}}=3.0 \times 10^{-8}\right)$
C) $\mathrm{HNO}_{2}\left(K_{a}=4.5 \times 10^{-4}\right)$
D) $\mathrm{HCN}\left(\mathrm{K}_{\mathrm{a}}=4.9 \times 10^{-10}\right)$
E) Acetic acid $\left(K_{a}=1.8 \times 10^{-5}\right)$

## Section B

## Question 1

a) Name any six classes of organic compounds
b) Give the functional group and a named example for each of the classes of compounds named above.
c) Draw all the structural and geometric isomers of pentene, $\mathrm{C}_{5} \mathrm{H}_{10}$, that have an unbranched hydrocarbon chain.
d) Name the following compounds
i)

ii)

iii)

iv)

v)

vi)

vii)

viii)


## Question 2

a) State whether the following statements are true or false:
i) In an exothermic equilibrium reaction, increasing the reaction temperature favors the formation of reactants.
ii) At constant temperature, reducing the volume of a gaseous equilibrium mixture causes the reaction to shift in the direction that increases the number of moles of gas in the system
iii) The effect of a catalyst on a chemical reaction is to react with product, effectively removing it and shifting the equilibrium to the right. Work equals force times distance.
iv) One joule equals $1 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}$. A gas is considered "ideal" if one mole of it in a one-liter container exerts a pressure of exactly 1 atm at room temperature.
v) According to the kinetic-molecular theory, molecules of different gases at the same temperature always have the same average kinetic energy.
vi) Two deviations of real gases from ideal gases which are treated in the van der Waals equation are finite molecular volume and non-zero molecular attractions.
vii) The instantaneous rate of a reaction can be read directly from the graph of molarity versus time at any point on the graph.
viii) The overall reaction order is the sum of the orders of each reactant in the rate law.
ix) The half-life for a first order rate law depends on the starting concentration.
x) An acid containing the COOH group is called a carbo-oxy acid.

## Question 3

a) What does Hess's Law state?
b) Given the following standard enthalpy changes of formation, calculate the standard enthalpy change of combustion of silane, $\mathrm{SiH}_{4}$ at 298 K :

c) From the following equations and their corresponding standard enthalpy changes, calculate the $\Delta \mathrm{H}^{\circ}{ }_{r \times n}$, for the following reaction at 298 K .

d. In the first step in the industrial process for making nitric acid, ammonia reacts with oxygen in the presence of a suitable catalyst to form nitric oxide and water vapor:
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2(g)} \rightarrow 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)}$
How many liters of $\mathrm{NH}_{3(g)}$ at $850^{\circ} \mathrm{C}$ and 5.00 atm are required to react with 3.50 M of $\mathrm{O}_{2}(\mathrm{~g})$ in this reaction?

## SI Units and Conversions

| Unit | Symbol | SI units |
| :---: | :---: | :---: |
| Newton | N | $\mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-2}$ |
| Pascal | Pa | $\mathrm{kg} \cdot \mathrm{m}^{-1} \cdot \mathrm{~s}^{-2}$ or $\mathrm{N} \cdot \mathrm{m}^{-2}$ |
| Joule | J | $\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$ or $\mathrm{N} \cdot \mathrm{m}$ or AVs |
| Watt | W | $\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-3}$ or J.s $\mathrm{s}^{-1}$ |
| Coulomb | C | A.s |
| Volt | V | $\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-1}$ or J. $\mathrm{C}^{-1}$ |
| Ohm | $\Omega$ | $\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-2}$ or $\mathrm{V} \cdot \mathrm{A}^{-1}$ |
| Amp | A | $1 \mathrm{Cs}^{-1}$ |

Pressure Units and conversion factors

| Pa | $1 \mathrm{~Pa}=1 \mathrm{~N} \cdot \mathrm{~m}^{-2}$ |
| :---: | :---: |
| Bar | $1 \mathrm{bar}=10^{5} \mathrm{~Pa}$ |
| Atmosphere | $1 \mathrm{~atm}=101.325 \mathrm{kPa}$ |
| Torr | 760 Torr $=1 \mathrm{~atm}$ |
|  | 760 Torr $=760 \mathrm{mmHg}=101.325 \mathrm{kPa}$ |

General data and Fundamental Constants

| Gas constant | R | $8.31451 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| :--- | :--- | :--- |
|  |  | $8.31451 \times 10^{-2} \mathrm{~L} \cdot{\mathrm{bar} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}}$ |
|  |  | $8.20578 \times 10^{-2} \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
|  |  | $62.364 \mathrm{~L} \cdot \mathrm{Torrr}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| Avogadro constant | $\mathrm{N}_{\mathrm{A}}$ | $6.022169 \times 10^{23} \mathrm{~mol}^{-1}$ |
| Molar volume of an ideal gas | $\mathrm{V}_{\mathrm{m}}$ | $22.414 \mathrm{dm}^{3}$ |
| at $0^{\circ} \mathrm{C}$ and 1 atm |  |  |

## UNIVERSITY OF SWAZILAND

Department of Chemistry


|  | ${ }^{59} \underset{1+0,9,}{\mathbf{P r}}$ | $\mathrm{Nd}$ | $\mathrm{Pm}_{146,9}$ | $\mathrm{Sm}_{150.36}$ | $\mathbf{E u}$ | Gd <br> 157.25 | Tb | ${ }^{646} \mathbf{D y}_{16250}$ | $\underset{16493}{\mathbf{H o}}$ | Er <br> 167.26 | $\mathbf{T m}$ $16899$ | Yb <br> ${ }^{173.0}$ | ${ }^{17} \mathbf{L u}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{20} \mathbf{T h}_{232.04}$ | Pa | $\mathbf{U}_{238.03}$ | $\mathrm{Np}_{237.5}$ | $\mathbf{P u}$ | Am | Cm | $\mathbf{B k}_{24}$ | $\mathbf{C f}_{c s, 1,}$ | $\underset{[253)}{ } \mathrm{Es}^{[ }$ | Fm | $\underset{c s s]}{\mathbf{M d}}$ | $\underset{\text { nosp }}{\text { No }}$ |  |

