UNIVERSITY OF SWAZILAND **SUPPLEMENTARY EXAMINATION – 2015, JUNE**

TITLE OF PAPER

Introductory Chemistry II

COURSE NUMBER

C112

TIME

Three Hours

INSTRUCTIONS

1. Answer all questions in Section A (Total 40 marks)

2. Answer any three questions in Section B (each question is 20 marks)

NB: Non-programmable electronic calculators may be used

A data sheet, a periodic table and answer sheet (for Section A) are attached

Useful data and equations:

1 atm = 760 Torr = 760 mmHg

1 atm = 101325 Pa

Arrhenius equation: $k = Ae^{-E_a/RT}$ or $lnk = lnA - \frac{E_a}{RT}$

Van der Walls equation:

 $P = \frac{nRT}{V - nb} - \frac{n^2a}{V^2}$

This Examination Paper Contains THIRTEEN Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been grated by the Chief Invigilator.

1.	A sample of gas (1.3 mol) occupies	L at 22°C and 4.5 atm.
	A) .079	B) .52
	C) 7.0	D) 13
	E) .032	
2.	A 6.50-g sample of copper metal at 25	.0 °C is heated by the addition of 84.0 J of energy.
		°C. The specific heat capacity of
	copper is 0.38 J/g-K.	
	A) 29.9	B) 25.0
	c) 9.0	D) 59.0
	E) 34.0	-,
3.	The general formula of a carboxylic ac	id is .
-	A) R-O-R'	B) R-CO-R'
	C) R-CO-OH	D) R-H
	E) R-CO-OR'	
4.	•	a first-order reaction is 0.27 M. The rate constant
••		e concentration (mol/L) of reactant after 0.50 s?
	A) 0.64	B) 1.7
	C) 0.19	D) 0.11
	E) 0.39	0/0.11
E	•	n monoxide is converted to carbon dioxide via the
Э.		if illohoxide is converted to carbon dioxide via the
	following reaction:	
	CO (g) + H ₂ O (g) [] CO ₂	o (a) + Ho (a)
	CO (6) · · · · · 20 (6) · · · · · · · · · · · · · · · · · · ·	2 (8) - 112 (8)
	In an experiment 0.35 mel of CO	and 0.40 mol of H ₂ O were placed in a 1.00-L
	· ·	<u> </u>
		ere were 0.16 mol of CO remaining. Keq at the
	temperature of the experiment is	
	A) 5.5	B) 0.75
	C) 0.93	D) 1.1
	E) 1.0	
6.	The density of krypton gas at 1.21 atm	
	A) 0.0456	B) 0.262
	C) 0.295	D) 3.82
	E) 7.65	
7.	, ,	gas is 2.20 J/g-K. How many joules of heat are
	needed to raise the temperature of 5.	.00 g of methane from 36.0 °C to 75.0 °C?
	A) 88.6	B) 429
	C) 1221	D) 0.0113
	E) 22.9	
8.	The addition of HBr to 2-butene p	roduces
	A) 1-bromobutane	B) 2-bromobutane
	C) 1,2-dibromobutane	D) 2,3-dibromobutane
	E) no reaction	
9.	At elevated temperatures, methylisor	nitrile (CH3NC) isomerizes to acetonitrile (CH3CN):
	•	

CH₃NC (g) \rightarrow CH₃CN (g)

•	re are 0.200 mol of reactant and 0 mol of product in, 0.106 mol of reactant (CH3NC) remain. There CH3CN) in the reaction vessel.
A) 0.022	B) 0.106
C) 0.200	D) 0.306
E) 0.094	
10. Which of the following expression the following reaction?	ns is the correct equilibrium-constant expression for
$CO_2(g) + 2H_2(g) \longrightarrow CH_3OH$	(g)
A) $\frac{\text{[CH}_3\text{OH]}}{\text{[CO}_2]}$	B) $\frac{\text{[CH}_3\text{OH]}}{\text{[CO}_2\text{][H}_2\text{]}}$
C) $\frac{\left[\text{CO}_2\right]\left[\text{H}_2\right]^2}{\left[\text{CH}_3\text{OH}\right]}$	D) $\frac{[CO_2][H_2]}{[CH_3OH]}$
E) $\frac{[CH_3OH]}{[CO_3][H_3]^2}$	•
L 2JL 2J	Latm and 19°C contains mol of gas.
A) .0116	B) .0148
C) 9.42	D) 12.4
E) 80.7	- , .
12. The value of ΔH° for the reaction below surroundings when 6.00 g of CO (g) reaction 2CO (g) + O ₂ (g) \rightarrow 2CO ₂ (g)	ow is -482 kJ. Calculate the heat (kJ) released to the eacts completely.
A) 1450	B) 103
C) 51.6	D) 482
E) -482	
13. What is the name of the compound b	pelow?
	H H H ₃ C — C — C = CH ₂ H ₃ C H CH ₃
	nge n eng
A) 2,4-methylbutene	B) 2,5-dimethylpentane
C) 2,4-ethylbutene	D) 2,4-dimethyl-1-pentene
E) 2,4-dimethyl-4-pentene	
14. The combustion of ethylene proceed	s by the reaction
$C_2H_4(g) + 3O_2(g) \rightarrow 2C_1$	O ₂ (g) + 2H ₂ O (g)
When the rate of disappearance	of O_2 is 0.23 Ms ⁻¹ , the rate of disappearance of
C_2H_4 is Ms ⁻¹ .	
A) 0.15	B) 0.077

C) 0.69	D) 0.35	
E) 0.46	<i>D</i>) 0.33	
•	e following reaction is 0.25:	
SO ₂ (g) + N	$NO_2(g) \longrightarrow SO_3(g) + NO(g)$	
The value of K _{eq} at	t the same temperature for the react	ion below is
2SO ₂ (g) +	2NO ₂ (g) \Longrightarrow 2SO ₃ (g) + 2NO (g)
A) 0.50	B) 0.063	
C) 0.12	D) 0.25	
E) 16		
-	as (3.00 L) in a closed container at 25	
A) 912	e of the gas at this temperature is B) 156	torr.
C) 76.5	D) 39.5	*
E) 0.0253	2,03.5	
•	ΔE in joules for a system that loses 7	3 J of heat and has 150 J of
work performed on it l	by the surroundings.	
A) -73	B) -77	
C) +77	D) +223	
E) -223		
18. Alkenes have the gene A) C _n H _{2n} .	erai formula B) C _n H _{2n-2} .	
·· - ··		
C) C _n H _{2n+2}	D) C _n H _n .	
E) C _{2n} H _n .		
19. For a first-order reacti	on, a plot of versus	is linear.
A) $\ln [A]_t, \frac{1}{t}$	B) In [A] _t , t	
C) $\frac{1}{[A]_t}$, t	D) [A] _t , t	
E) $t, \frac{1}{[A]_t}$		
20. The equilibrium expre	ssion for K_p for the reaction below is	·
$N_2(g) + O_2(g) \leq$	==>> 2NO (g)	
A) $\frac{(2PO_2)(2PN_2)}{2PN_2}$	B) $\frac{(PO_2)(}{}$	(PN_2)
LPNU (DO \(DN \	2PN (27	NO)
A) $\frac{(2PO_2)(2PN_2)}{2P\text{NO}}$ C) $\frac{(PO_2)(PN_2)}{P\text{NO}}$	B) $\frac{(PO_2)(}{2PN_2}$ D) $\frac{(2PN_2)}{(2PN_2)}$	$\frac{1}{(2PO_2)}$

E) none of the above

21. A gas originally at 27°C and	•				
pressure until the tempera	iture is 11°C		w volume	e of the gas is	L.
A) 0.27		B) 3.7			
C) 3.9		D) 4.1			
E) 0.24					
22. The kinetic energy of a 23.	2-g object n	_	-	of 93.6 m/s is	J.
A) 145		B) 102			
C) 1450		D) 0.95	50		
E) 102000					
23. The general formula of an	alkane is		 .		
A) C _{2n} H _{2n+2}		B) C _n H	2n		
C) C _n H _{2n+2}		D) C _n F	^l 2n-2		
E) C _n H _n					
The data in the table b	elow were o	btained j	for the re	action:ຼ	
$A + B \rightarrow P$					
	Experiment	I		Initial Rate	
	Number	[A] (M)	[B] (M)	(M/s)	
	1	0.273	0.763	2.83	
	2	0.273	1.526	2.83	
	3	0.819	0.763	25.47	
24. The order of the reaction	in A is	•			
A) 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	B) 2			
C) 3		D) 4			
E) 0		·			
25. The order of the reaction	in B is	·•			
A) 1	*	B) 2			
C) 3		D) 4			
E) O					
26. The overall order of the re	eaction is		_•		
A) 1		B) 2			
C) 3		D) 4			
E) 0					
27. The Keq for the equilibriu	m below is 7	7.52 × 10-	2 at 480.	.0°C.	
2Cl₂ (g) + 2H₂O (g) €	→ 4HCl (g)	+ O2 (g)			
What is the value of Keq a	nt this temp	erature fo	or the fol	lowing reaction?	

4HCl (g) + O2 (g) 2Cl2 (g) + 2H2O (g)

•		
A) 0.0752		B) -0.0752
C) 13.3		D) 5.66 × 10-3
E) 0.150	· -	•
_	-	39 Lat 44°C and a pressure of 729 torr. The
	se cooled to	°C to reduce its volume to 3.78 L (at constant
pressure). A) 38.0		B) 0.00
C) 72.9		D) 273
E) 546		-,
29. Given the data	a in the table below, ΔH°_{r}	xn for the reaction
PC	l_3 (g) + 3 HCl (g) \rightarrow 3 Cl	2 (g) + PH ₃ (g)
is	_kJ.	
 	ΔH _f ° (kJ/mol)	
J 💝	-288.07	•
HCl (g) PH ₃ (g)	-92.30 5.40	
3 (8)		
A) -570.37	ı	B) -385.77
C) 570.37		D) 385.77
E) The ΔH	f of Cl ₂ (g) is needed for	the calculation.
зо. A Brønsted-Lo	owry base is defined as a	substance that
A) increas	es [H ⁺] when placed in H ₂	20
B) decreas	ses [H ⁺] when placed in H	20
C) increase	es [OH ⁻] when placed in F	1 ₂ 0
D) acts as	a proton acceptor	
E) acts as	a proton donor	
		n atom in an alkane is
A) octahe		B) square planar
C) trigona	ı pıanar I pyramidal	D) tetrahedral
• •		e studied and it was determined that the reaction
		ration of B was tripled. The reaction is
	order in B.	·
А	+ B → P	
A) zero		B) first
C) second		D) third
E) one-ha		
	-	es a volume of 10.0 L when the pressure is 629
		e volume (L) the gas will occupy when the
A) 10.9	is ilici casca to 121 C MUI	le maintaining the pressure at 629 torr. B) 13.2
N ₁ 10.3		w, w.e.

C) 2.07	D) 7.56		
E) 48.4	and a to 2054 lds		
34. The value of ΔH° for the following re 2AI (s) + 3O ₂ (g) \rightarrow 2 AI ₂ O ₃ (s)			
The value of ΔH_f ° for Al_2O_3 (s) is			
A) -3351	B) -1676		
C) -32.86 E) +3351	D) -16.43		
•	g as both an acid and as a base is		
A) autosomal	B) conjugated		
C) amphoteric	D) saturated		
E) miscible	_,		
36. Hydrocarbons containing carbon-ca	rbon triple bonds are called		
A) alkanes	B) aromatic hydrocarbons		
C) alkynes	D) alkenes		
E) olefins	,		
37. If the rate law for the reaction	•		
2A + 3B → products			
is first order in A and second order i	n B, then the overall rate law is rate =		
A) k[A][B]	B) $k[A]^2[B]^3$		
C) k[A][B] ²	D) k[A] ² [B]		
E) k[A] ² [B] ²			
	laced in a 750.0 mL container at 50.0°C. The partial		
pressure of CO ₂ in the container wa			
A) 4.02	B) 10.3		
C) 1.60	D) 0.292		
E) 6.31	5, 6.252		
39. Given the following reactions:			
$2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$	$\Delta H = -790 \text{ kJ}$		
$S(s) + O_2(g) \rightarrow SO_2(g)$	ΔH = -297 kJ		
the enthalpy of the reaction in which $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$	h sulfur dioxide is oxidized to sulfur trioxide		
is kJ.			
A) 196	B) -196		
C) 1087 D)	-1384		
E) -543			
40. The molar concentration of hydroni	ium ion in pure water at 25°C is		
A) 0.00	B) 1.0×10^{-7}		
C) 1.0×10^{-14}	D) 1.00		
E) 7.00			
41. Which of the following compounds does <u>not</u> contain a C=O bond?			
A) ketones	B) aldehydes		
C) esters	D) amides		

•

	E) ethers	
	•	en pentoxide decomposes to nitrogen dioxide and
	oxygen:	
	$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$	g)
	When the rate of formation of NO2	is 5.5×10^{-4} M/s, the rate of decomposition of N ₂ O ₅
	is M/s.	
	A) 2.2×10^{-3}	B) 1.4 × 10 ⁻⁴
	c) 10.1 × 10 ⁻⁴	D) 2.8 × 10 ⁻⁴
	E) 5.5 × 10-4	2, 2.2
	•	vere placed in a 750.0 mL container at 50.0°C. The
•	total pressure in the container	
	A) 0.192	B) 4.02
	C) 2.76	D) 6.78
	E) 1.60	
	-	0.13 J/g-K. How much heat (in J) is required to raise
	the temperature of 15 g of lead fro	
	A) 2.0	B) -0.13
	C) 5.8×10^{-4}	D) 29
	E) 0.13	
	45. Which solution below has the high	est concentration of hydroxide ions?
	A) $pH = 3.21$	B) pH = 12.6
	C) pH = 7.93	D) pH = 9.82
	E) pH = 7.00	
	46. Which structure below represents	an aldehyde?
		С—с—он
	A) CH ₃ CH ₂ — O — CH ₂ CH ₃	в)
	٥	° °
	сн₃сн₂с″	—ё—сн ₃
	C) H	D)
	E) NH ₂	
	•	with a total pressure of 8.40 atm, the mole fraction of
	-	ssures of He and Ne are 1.50 and 2.00 atm,
	respectively.	
	A) 0.179	B) 0.238
	C) 0.357	D) 0.583
	E) 0.417	
	48. The value of ΔH° for the reaction b	elow is -1107 kJ:
-	and the second of the second o	And the second s
	2Ba (s) + O_2 (g) \rightarrow 2BaO (s)	
	How many kJ of heat are released	when 15.75 g of Ba (s) reacts completely with oxygen
	to form BaO (s)?	
	A) 20.8	B) 63.5
	C) 114	D) 70.3
	E) 35.1	

.

- 49. Which statement about hydrocarbons is false?
 - A) The smallest alkane to have structural (constitutional) isomers has 4 carbon atoms.
 - B) Cyclic alkanes are structural isomers of alkenes.
 - C) Alkanes are more reactive than alkenes.
 - D) Alkanes can be produced by hydrogenating alkenes.
 - E) Alkenes can be polymerized.
- 50. What is the general formula for a ketone?
 - A) R-O-R

B) R-CO-R'

C) R-CO-OH

D) R-OH

E) R-CHO

Section B

Question 1

- a. Calculate the pH of 5 x 10⁻⁸ M NaOH at 25°C. (Hint: note the concentration of NaOH and show all the steps in your calculation.)
- b. 10.00 ml of 0.200 M NH₃ is titrated with 0.150 M HCl (K_a for NH₄⁺ = 5.70 x 10⁻¹⁰), calculate the pH of the solution after 5.00 ml of HCl was added. (6)
- c. Calculate the concentration of H⁺ (aq) in:

i. a solution in which
$$[OH^-]$$
 is $0.010 M$, (3)

ii. a solution in which
$$[OH^-]$$
 is $1.8 \times 10^{-9} M$ (3)

State whether these solutions are neutral, acidic or basic

Question 2

a. Give the systematic name of the following compound and identify the class i.e. alkane, alkene, alcohol, ketone, aldehyde, carboxylic acid etc:

 (10)

	Name	Class
i) CH ₃ (CH ₂) ₃ CH ₃		
ii) CH ₃ CH ₂ CH=CH ₂		
iii) CH ₃ OCH ₃		
iv) CH ₃ NH ₂		
v) CH ₃ (CH ₂) ₃ CH(OH)CH ₃		

b) Draw the structures of the following compounds:

(10)

- i. Cis-2-butene
- ii. Octa-2,5-diene
- iii. 4,6-Dimethyl-hept-1-yne
- iv. 1-methylcyclohexene
- v. 2-Bromo-4-hydroxy-pentanoic acid

Question 3

a. A 1.000-L flask is filled with 1.000 mol of $H_2(g)$ and 2.000 mol of $I_2(g)$ at 447 °C. The value of the equilibrium constant K_c for the reaction

b.
$$H_2(g) + I_2(g) \Longrightarrow 2 HI(g)$$

at 448 °C is 50.5. What are the equilibrium concentrations of H₂, I₂, and HI in moles per liter? (8)

b. The initial rate of a reaction $A + B \rightarrow C$ was measured for several different starting concentrations of A and B, and the results are as follows:

Experiment Number	[A] (M)	[B] (M)	Initial Rate (M/s)
1	0.100	0.100	4.0×10^{-5}
2	0.100	0.200	4.0×10^{-5}
3	0.200	0.100	16.0×10^{-5}

Using these data, determine

i. the rate law for the reaction,

(2)

ii. the rate constant,

(5)

iii. The rate of the reaction when [A] = 0.050 M and [B] = 0.100 M.

(5)

SI Units and Conversions

Unit	Symbol	SI units
Newton	N	kg.m.s ⁻²
Pascal	Pa	kg.m ⁻¹ .s ⁻² or N.m ⁻²
Joule	J	kg.m ² .s ⁻² or N.m or AVs
Watt	W	kg.m ² .s ⁻³ or J.s ⁻¹
Coulomb	С	A.s
Volt	V	kg.m ² .s ⁻³ .A ⁻¹ or J.C ⁻¹
Ohm	Ω	kg.m ² .s ⁻³ .A ⁻² or v.A ⁻¹
Amp	A	1Cs ⁻¹

Pressure Units and conversion factors

Pa	l Pa = 1 N.m ⁻²
Bar	1 bar = 10 ⁵ Pa
Atmosphere	1 atm = 101.325 kPa
Torr	760 Torr = 1 atm
	760 Torr = 760 mmHg= 101.325 kPa

General data and Fundamental Constants

Gas constant	R	8.314 51 J.K ⁻¹ .mol ⁻¹ 8.314 51 x 10 ⁻² L.bar.K ⁻¹ .mol ⁻¹ 8.205 78 x 10 ⁻² L.atm.K ⁻¹ .mol ⁻¹ 62.364 L.Torr.K ⁻¹ .mol ⁻¹
Avogadro constant	N _A	6.022169 x 10 ²³ mol ⁻¹
Molar volume of an ideal gas at 0°C and 1 atm	V _m	22.414 dm ³

UNIVERSITY OF SWAZILAND

Department of Chemistry

Atomic Weight

He 4.0026

1]
H 1.0079	
3	4
Li 6.941	Be 9.0122
11	12
Na 22.990	Mg 24.305
19	20
K 39.098	Ca 40.078
37	38
Rb 85.47	Sr 87.62
55	56
Cs 132.91	Ba 137.33
87	88
Fr (223)	Ra 226.03

Ac 227.03

21	22	23	24	25	26	27	28	29	30
Sc 44.956	Ti 47.88	V 50.942	Cr 51.996	Mn 54.938	Fe 55.847	Co 58,933	Ni 58.69	Cu 63.546	Zn 65.35
9	40	41	42	43	44	45			48
${f Y}$	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
88.906	91.224	92.906	95.94	(98)		102.91	106.42	Ag 107.87	112.4
7	72	73	74	75	76	77	78	79	80
La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg 200.55
138.91	1								200 50

Atomic Number

						He 4.0026
5	B	6 C 12.011	7 N 14.007	8 O 15.999	F	Ne 20.179
13	Al 26.982	14 Si 28.086	P 30.974	S 32.064	Cl . 35.453	Ar 39.948
31	Ga 69.723	32 Ge 72.61	33 As 74.922	34 Se 78.96	35 Br 79,904	36 Kr 83.80
49	In 114.82	50 Sn 118.71	51 Sb 121.75	Te 127.60	53 I 126.90	54 Xe 131.29
81	Tl 204.38	Pb 207.2	83 Bi 208.98	Po (209)	85 At (210)	Rn (222)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.12	140.91	144.24	146.92	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(234)	(247)	247	(251)	(252)	(257)	(258)	(259)	(260)