# UNIVERSITY OF SWAZILAND <br> SUPPLEMENTARY EXAMINATION - 2015, JUNE 

## TITLE OF PAPER : Introductory Chemistry II

## COURSE NUMBER : C112

TIME : Three Hours

## INSTRUCTIONS

1. Answer all questions in Section $\mathbf{A}$ (Total 40 marks)
2. Answer any three questions in Section $B$ (each question is 20 marks)

NB: Non-programmable electronic calculators may be used
A data sheet, a periodic table and answer sheet (for Section A) are attached

Useful data and equations:
$1 \mathrm{~atm}=760$ Torr $=760 \mathrm{mmHg}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}$
Arrhenius equation: $k=A e^{-E_{a} / R T} \quad$ or $\quad \ln k=\ln A-\frac{E_{a}}{R T}$

Van der Walls equation:

$$
P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}
$$

This Examination Paper Contains THIRTEEN Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been grated by the Chief Invigilator.

1. A sample of gas ( 1.3 mol ) occupies $\qquad$ Lat $22^{\circ} \mathrm{C}$ and 4.5 atm .
A) .079
B) .52
C) 7.0
D) 13
E) .032
2. A $6.50-\mathrm{g}$ sample of copper metal at $25.0^{\circ} \mathrm{C}$ is heated by the addition of 84.0 J of energy. The final temperature of the copper is $\qquad$ ${ }^{\circ} \mathrm{C}$. The specific heat capacity of copper is $0.38 \mathrm{~J} / \mathrm{g}-\mathrm{K}$.
A) 29.9
B) 25.0
C) 9.0
D) 59.0
E) 34.0
3. The general formula of a carboxylic acid is $\qquad$ .
A) $\mathrm{R}-\mathrm{O}-\mathrm{R}^{\prime}$
B) $\mathrm{R}-\mathrm{CO}-\mathrm{R}^{\prime}$
C) $\mathrm{R}-\mathrm{CO}-\mathrm{OH}$
D) $\mathrm{R}-\mathrm{H}$
E) R -CO-OR'
4. The initial concentration of reactant in a first-order reaction is 0.27 M . The rate constant for the reaction is $0.75 \mathrm{~s}^{-1}$. What is the concentration ( $\mathrm{mol} / \mathrm{L}$ ) of reactant after 0.50 s ?
A) 0.64
B) 1.7
C) 0.19
D) 0.11
E) 0.39
5. In the coal-gasification process, carbon monoxide is converted to carbon dioxide via the following reaction:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \square \quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

In an experiment, 0.35 mol of CO and 0.40 mol of $\mathrm{H}_{2} \mathrm{O}$ were placed in a $1.00-\mathrm{L}$ reaction vessel. At equilibrium, there were 0.16 mol of CO remaining. Keq at the temperature of the experiment is $\qquad$ .
A) 5.5
B) 0.75
C) 0.93
D) 1.1
E) 1.0
6. The density of krypton gas at 1.21 atm and $50.0^{\circ} \mathrm{C}$ is $\qquad$ $\mathrm{g} / \mathrm{L}$.
A) 0.0456
B) 0.262
C) 0.295
D) 3.82
E) 7.65
7. The specific heat capacity of methane gas is $2.20 \mathrm{~J} / \mathrm{g}-\mathrm{K}$. How many joules of heat are needed to raise the temperature of 5.00 g of methane from $36.0^{\circ} \mathrm{C}$ to $75.0^{\circ} \mathrm{C}$ ?
A) 88.6
B) 429
C) 1221
D) 0.0113
E) 22.9
8. The addition of HBr to 2-butene produces $\qquad$ .
A) 1-bromobutane
B) 2-bromobutane
C) 1,2-dibromobutane
D) 2,3-dibromobutane
E) no reaction
9. At elevated temperatures, methylisonitrile $\left(\mathrm{CH}_{3} \mathrm{NC}\right)$ isomerizes to acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ :

$$
\mathrm{CH}_{3} \mathrm{NC}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CN}(\mathrm{~g})
$$

At the start of an experiment, there are 0.200 mol of reactant and 0 mol of product in the reaction vessel. After $25 \mathrm{~min}, 0.106 \mathrm{~mol}$ of reactant $\left(\mathrm{CH}_{3} \mathrm{NC}\right)$ remain. There are $\qquad$ mol of product ( $\mathrm{CH}_{3} \mathrm{CN}$ ) in the reaction vessel.
A) 0.022
B) 0.106
C) 0.200
D) 0.306
E) 0.094
10. Which of the following expressions is the correct equilibrium-constant expression for the following reaction?

$$
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

A) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]}$
B) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}$
C) $\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$
D) $\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$
E) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}$
11. A 0.325 L flask filled with gas at 0.851 atm and $19^{\circ} \mathrm{C}$ contains $\qquad$ mol of gas.
A) 0116
B) .0148
C) 9.42
D) 12.4
E) 80.7
12. The value of $\Delta \mathrm{H}^{\circ}$ for the reaction below is -482 kJ . Calculate the heat ( kJ ) released to the surroundings when 6.00 g of $\mathrm{CO}(\mathrm{g})$ reacts completely.
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
A) 1450
B) 103
C) 51.6
D) 482
E) -482
13. What is the name of the compound below?

A) 2,4-methylbutene
B) 2,5-dimethylpentane
C) 2,4-ethylbutene
D) 2,4-dimethyl-1-pentene
E) 2,4-dimethyl-4-pentene
14. The combustion of ethylene proceeds by the reaction

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

When the rate of disappearance of $\mathrm{O}_{2}$ is $0.23 \mathrm{Ms}^{-1}$, the rate of disappearance of $\mathrm{C}_{2} \mathrm{H}_{4}$ is $\qquad$ $\mathrm{Ms}^{-1}$.
A) 0.15
B) 0.077
C) 0.69
D) 0.35
E) 0.46
15. The value of $\mathrm{K}_{\mathrm{eq}}$ for the following reaction is 0.25 :

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})
$$

The value of $\mathrm{K}_{\mathrm{eq}}$ at the same temperature for the reaction below is $\qquad$ .

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g})
$$

A) 0.50
B) 0.063
C) 0.12
D) 0.25
E) 16
16. A sample of an ideal gas ( 3.00 L ) in a closed container at $25.0^{\circ} \mathrm{C}$ and 76.0 torr is heated to $340^{\circ} \mathrm{C}$. The pressure of the gas at this temperature is $\qquad$ torr.
A) 912
B) 156
C) 76.5
D) 39.5
E) 0.0253
17. Calculate the value of $\Delta E$ in joules for a system that loses 73 J of heat and has 150 J of work performed on it by the surroundings.
A) -73
B) -77
C) +77
D) +223
E) -223
18. Alkenes have the general formula $\qquad$ .
A) $\mathrm{C}_{n} \mathrm{H}_{2 n}$.
B) $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$.
C) $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$
D) $\mathrm{C}_{n} \mathrm{H}_{\mathrm{n}}$.
E) $\mathrm{C}_{2 n} \mathrm{H}_{n}$.
19. For a first-order reaction, a plot of $\qquad$ versus $\qquad$ is linear.
A) $\ln [A]_{t}, \frac{1}{t}$
B) $\ln [A]_{t} t$
C) $\frac{1}{[\mathrm{~A}]_{\mathrm{t}}}, \mathrm{t}$
D) $[A]_{t}, t$
E) $t, \frac{1}{[A]_{t}}$
20. The equilibrium expression for $\mathrm{K}_{\mathrm{p}}$ for the reaction below is $\qquad$ .
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NO}(\mathrm{g})$
A) $\frac{\left(2 \mathrm{PO}_{2}\right)\left(2 \mathrm{PN}_{2}\right)}{2 \mathrm{PNO}}$
B) $\frac{\left(P O_{2}\right)\left(P N_{2}\right)}{2 P \mathrm{NO}}$
C) $\frac{\left(\mathrm{PO}_{2}\right)\left(\mathrm{PN}_{2}\right)}{\mathrm{PNO}}$
D) $\frac{(2 \mathrm{PNO})}{\left(2 \mathrm{PN}_{2}\right)\left(2 \mathrm{PO}_{2}\right)}$
E) none of the above
21. A gas originally at $27^{\circ} \mathrm{C}$ and 1.00 atm pressure in a 3.9 L flask is cooled at constant pressure until the temperature is $11^{\circ} \mathrm{C}$. The new volume of the gas is $\qquad$ L.
A) 0.27
B) 3.7
C) 3.9
D) 4.1
E) 0.24
22. The kinetic energy of a $23.2-\mathrm{g}$ object moving at a speed of $93.6 \mathrm{~m} / \mathrm{s}$ is $\qquad$ J.
A) 145
B) 102
C) 1450
D) 0.950
E) 102000
23. The general formula of an alkane is $\qquad$ .
A) $\mathrm{C}_{2 n} \mathrm{H}_{2 n+2}$
B) $\mathrm{C}_{n} \mathrm{H}_{2 n}$
C) $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$
D) $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$
E) $\mathrm{C}_{n} \mathrm{H}_{n}$

The data in the table below were obtained for the reaction:

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{P}
$$

| Experiment <br> Number | $[\mathrm{A}](\mathrm{M})$ | $[\mathrm{B}](\mathrm{M})$ | Intial Rate <br> $(\mathrm{M} / \mathrm{s})$ |
| :---: | :--- | :--- | :--- |
| 1 | 0.273 | 0.763 | 2.83 |
| 2 | 0.273 | 1.526 | 2.83 |
| 3 | 0.819 | 0.763 | 25.47 |

24. The order of the reaction in $A$ is $\qquad$ .
A) 1
B) 2
C) 3
D) 4
E) 0
25. The order of the reaction in $B$ is $\qquad$ .
A) 1
B) 2
C) 3
D) 4
E) 0
26. The overall order of the reaction is $\qquad$ .
A) 1
B) 2
C) 3
D) 4
E) 0
27. The Keq for the equilibrium below is $7.52 \times 10-2$ at $480.0^{\circ} \mathrm{C}$.

$$
2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longleftrightarrow 4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g})
$$

What is the value of Keq at this temperature for the following reaction?

$$
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}) \quad 2 \mathrm{Cl} 2(\mathrm{~g})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{~g})
$$

A) 0.0752
B) -0.0752
C) 13.3
D) $5.66 \times 10-3$
E) 0.150
28. A balloon originally had a volume of 4.39 L at $44^{\circ} \mathrm{C}$ and a pressure of 729 torr. The balloon must be cooled to $\qquad$ ${ }^{\circ} \mathrm{C}$ to reduce its volume to 3.78 L (at constant pressure).
A) 38.0
B) 0.00
C) 72.9
D) 273
E) 546
29. Given the data in the table below, $\Delta \mathrm{H}^{\circ}{ }^{r} \times n$ for the reaction

$$
\mathrm{PCl}_{3}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{~g}) \rightarrow 3 \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{PH}_{3}(\mathrm{~g})
$$

is $\qquad$ kJ .

| Compound | $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}(\mathrm{kJ} / \mathrm{mol})$ |
| :--- | :---: |
| $\mathrm{PCl}_{3}(\mathrm{~g})$ | -288.07 |
| $\mathrm{HCl}(\mathrm{g})$ | -92.30 |
| $\mathrm{PH}_{3}(\mathrm{~g})$ | 5.40 |

A) -570.37
B) -385.77
C) 570.37
D) 385.77
E) The $\Delta \mathrm{H}^{\circ} \mathrm{f}$ of $\mathrm{Cl}_{2}(\mathrm{~g})$ is needed for the calculation.
30. A Brønsted-Lowry base is defined as a substance that $\qquad$ .
A) increases $\left[\mathrm{H}^{+}\right]$when placed in $\mathrm{H}_{2} \mathrm{O}$
B) decreases $\left[\mathrm{H}^{+}\right]$when placed in $\mathrm{H}_{2} \mathrm{O}$
C) increases $\left[\mathrm{OH}^{-}\right]$when placed in $\mathrm{H}_{2} \mathrm{O}$
D) acts as a proton acceptor
E) acts as a proton donor
31. The molecular geometry of each carbon atom in an alkane is $\qquad$ .
A) octahedral
B) square planar
C) trigonal planar
D) tetrahedral
E) trigonal pyramidal
32. The kinetics of the reaction below were studied and it was determined that the reaction rate did not change when the concentration of $B$ was tripled. The reaction is
$\qquad$ order in B.

$$
A+B \rightarrow P
$$

A) zero
B) first
C) second
D) third
E) one-half
33. A fixed amount of gas at $25.0^{\circ} \mathrm{C}$ occupies a volume of 10.0 L when the pressure is 629 torr. Use Charles's law to calculate the volume (L) the gas will occupy when the temperature is increased to $121^{\circ} \mathrm{C}$ while maintaining the pressure at 629 torr.
A) 10.9
B) 13.2
C) 2.07
D) 7.56
E) 48.4
34. The value of $\Delta H^{\circ}$ for the following reaction is -3351 kJ :
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}$ (g) $\rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$ (s)
The value of $\Delta \mathrm{H}_{f}{ }^{\circ}$ for $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ is $\qquad$ kJ .
A) - 3351
B) -1676
C) -32.86
D) -16.43
E) +3351
35. A substance that is capable of acting as both an acid and as a base is $\qquad$ .
A) autosomal
B) conjugated
C) amphoteric
D) saturated
E) miscible
36. Hydrocarbons containing carbon-carbon triple bonds are called $\qquad$ .
A) alkanes
B) aromatic hydrocarbons
C) alkynes
D) alkenes
E) olefins
37. If the rate law for the reaction
$2 A+3 B \rightarrow$ products
is first order in $A$ and second order in $B$, then the overall rate law is rate $=$ $\qquad$ .
A) $k[A][B]$
B) $k[A]^{2}[B]^{3}$
C) $k[A][B]^{2}$
D) $k[A]^{2}[B]$
E) $k[A]^{2}[B]^{2}$
38. $\mathrm{CO}(5.00 \mathrm{~g})$ and $\mathrm{CO}_{2}(5.00 \mathrm{~g})$ were placed in a 750.0 mL container at $50.0^{\circ} \mathrm{C}$. The partial pressure of $\mathrm{CO}_{2}$ in the container was $\qquad$ atm.
A) 4.02
B) 10.3
C) 1.60
D) 0.292
E) 6.31
39. Given the following reactions:
$2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-790 \mathrm{~kJ}$
$\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-297 \mathrm{~kJ}$
the enthalpy of the reaction in which sulfur dioxide is oxidized to sulfur trioxide
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
is $\qquad$ kJ.
A) 196
B) -196
C) 1087
D) -1384
E) -543
40. The molar concentration of hydronium ion in pure water at $25^{\circ} \mathrm{C}$ is $\qquad$ .
A) 0.00
B) $1.0 \times 10^{-7}$
C) $1.0 \times 10^{-14}$
D) 1.00
E) 7.00
41. Which of the following compounds does not contain a $\mathrm{C}=\mathrm{O}$ bond?
A) ketones
B) aldehydes
C) esters
D) amides
E) ethers
42. At elevated temperatures, dinitrogen pentoxide decomposes to nitrogen dioxide and oxygen:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

When the rate of formation of $\mathrm{NO}_{2}$ is $5.5 \times 10^{-4} \mathrm{M} / \mathrm{s}$, the rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $\qquad$ M/s.
A) $2.2 \times 10^{-3}$
B) $1.4 \times 10^{-4}$
C) $10.1 \times 10^{-4}$
D) $2.8 \times 10^{-4}$
E) $5.5 \times 10^{-4}$
43. $\mathrm{SO}_{2}(5.00 \mathrm{~g})$ and $\mathrm{CO}_{2}(5.00 \mathrm{~g})$ were placed in a 750.0 mL container at $50.0^{\circ} \mathrm{C}$. The total pressure in the container was $\qquad$ atm.
A) 0.192
B) 4.02
C) 2.76
D) 6.78
E) 1.60
44. The specific heat capacity of lead is $0.13 \mathrm{~J} / \mathrm{g}-\mathrm{K}$. How much heat (in J) is required to raise the temperature of 15 g of lead from $22^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$ ?
A) 2.0
B) -0.13
C) $5.8 \times 10^{-4}$
D) 29
E) 0.13
45. Which solution below has the highest concentration of hydroxide ions?
A) $\mathrm{pH}=3.21$
B) $\mathrm{pH}=12.6$
C) $\mathrm{pH}=7.93$
D) $\mathrm{pH}=9.82$
E) $\mathrm{pH}=7.00$
46. Which structure below represents an aldehyde?
A)

B)

C)

D)

E)

47. In a gas mixture of $\mathrm{He}, \mathrm{Ne}$, and Ar with a total pressure of 8.40 atm , the mole fraction of Ar is $\qquad$ if the partial pressures of He and Ne are 1.50 and 2.00 atm , respectively.
A) 0.179
B) 0.238
C) 0.357
D) 0.583
E) 0.417
48. The value of $\Delta H^{\circ}$ for the reaction below is -1107 kJ :

$$
2 \mathrm{Ba}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BaO}(\mathrm{~s})
$$

How many kJ of heat are released when 15.75 g of $\mathrm{Ba}(\mathrm{s})$ reacts completely with oxygen to form BaO (s)?
A) 20.8
B) 63.5
C) 114
D) 70.3
E) 35.1
49. Which statement about hydrocarbons is false?
A) The smallest alkane to have structural (constitutional) isomers has 4 carbon atoms.
B) Cyclic alkanes are structural isomers of alkenes.
C) Alkanes are more reactive than alkenes.
D) Alkanes can be produced by hydrogenating alkenes.
E) Alkenes can be polymerized.
50. What is the general formula for a ketone?
A) R-O-R
B) $\mathrm{R}-\mathrm{CO}-\mathrm{R}^{\prime}$
C) $\mathrm{R}-\mathrm{CO}-\mathrm{OH}$
D) $\mathrm{R}-\mathrm{OH}$
E) $\mathrm{R}-\mathrm{CHO}$

## Section B

## Question 1

a. Calculate the pH of $5 \times 10^{-8} \mathrm{M} \mathrm{NaOH}$ at $25^{\circ} \mathrm{C}$. (Hint: note the concentration of NaOH and show all the steps in your calculation.)
b. 10.00 ml of $0.200 \mathrm{M} \mathrm{NH}_{3}$ is titrated with $0.150 \mathrm{M} \mathrm{HCl}\left(\mathrm{K}_{\mathrm{a}}\right.$ for $\left.\mathrm{NH}_{4}{ }^{+}=5.70 \times 10^{-10}\right)$, calculate the pH of the solution after 5.00 ml of HCl was added.
c. Calculate the concentration of $\mathrm{H}^{+}(a q)$ in:
i. a solution in which $\left[\mathrm{OH}^{-}\right]$is 0.010 M ,
ii. a solution in which $\left[\mathrm{OH}^{-}\right]$is $1.8 \times 10^{-9} \mathrm{M}$

State whether these solutions are neutral, acidic or basic

## Question 2

a. Give the systematic name of the following compound and identify the class i.e. alkane, alkene, alcohol, ketone, aldehyde, carboxylic acid etc:
(10)

|  | Name | Class |
| :--- | :--- | :--- |
| i) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$ |  |  |
| ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ |  |  |
| iii) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ |  |  |
| iv) $\mathrm{CH}_{3} \mathrm{NH}_{2}$ |  |  |
| v) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ |  |  |

b) Draw the structures of the following compounds:
i. Cis-2-butene
ii. Octa-2,5-diene
iii. 4,6-Dimethyl-hept-1-yne
iv. 1-methylcyclohexene
v. 2-Bromo-4-hydroxy-pentanoic acid

## Question 3

a. A $1.000-\mathrm{L}$ flask is filled with 1.000 mol of $\mathrm{H}_{2}(g)$ and 2.000 mol of $\mathrm{I}_{2}(g)$ at $447^{\circ} \mathrm{C}$. The value of the equilibrium constant $K_{c}$ for the reaction
b. $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)$
at $448^{\circ} \mathrm{C}$ is 50.5 . What are the equilibrium concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI in moles per liter?
b. The initial rate of a reaction $A+B \rightarrow C$ was measured for several different starting concentrations of $A$ and $B$, and the results are as follows:

| Experiment <br> Number | $[A](M)$ | $[B](M)$ | Initial Rate $(M / \mathrm{s})$ |
| :--- | :--- | :--- | :--- |
| 1 | 0.100 | 0.100 | $4.0 \times 10^{-5}$ |
| 2 | 0.100 | 0.200 | $4.0 \times 10^{-5}$ |
| 3 | 0.200 | 0.100 | $16.0 \times 10^{-5}$ |
|  |  |  |  |

Using these data, determine
i. the rate law for the reaction,
ii. the rate constant,
iii. The rate of the reaction when $[A]=0.050 \mathrm{M}$ and $[B]=0.100 \mathrm{M}$.

## SI Units and Conversions

| Unit | Symbol | Sl units |
| :---: | :---: | :---: |
| Newton | N | $\mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-2}$ |
| Pascal | Pa | $\mathrm{kg} \cdot \mathrm{m}^{-1} \mathrm{~s}^{-2}$ or $\mathrm{N} \cdot \mathrm{m}^{-2}$ |
| Joule | J | $\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$ or $\mathrm{N} \cdot \mathrm{m}$ or AVs |
| Watt | W | $\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-3}$ or $\mathrm{J} \cdot \mathrm{s}^{-1}$ |
| Coulomb | C | $\mathrm{A} \cdot \mathrm{s}$ |
| Volt | V | $\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-1}$ or J. $\mathrm{C}^{-1}$ |
| Ohm | $\Omega$ | $\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-2}$ or $\cdot \mathrm{A}^{-1}$ |
| Amp | A | $1 \mathrm{Cs}^{-1}$ |

Pressure Units and conversion factors

| Pa | $1 \mathrm{~Pa}=1 \mathrm{~N} \cdot \mathrm{~m}^{-2}$ |
| :---: | :---: |
| Bar | $1 \mathrm{bar}=10^{5} \mathrm{~Pa}$ |
| Atmosphere | $1 \mathrm{~atm}=101.325 \mathrm{kPa}$ |
| Torr | $760 \mathrm{Torr}=1 \mathrm{~atm}$ |
|  | 760 Torr $=760 \mathrm{mmHg}=101.325 \mathrm{kPa}$ |

General data and Fundamental Constants

| Gas constant | R | $8.31451 \mathrm{J.K} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| :--- | :--- | :--- |
|  |  | $8.31451 \times 10^{-2} \mathrm{~L} \cdot \mathrm{bar}^{-1} \cdot \mathrm{Kol}^{-1}$ |
|  |  | $8.20578 \times 10^{-2} \mathrm{~L} \cdot \mathrm{Katm}^{-1} \cdot \mathrm{~mol}^{-1}$ |
|  |  | $62.364 \mathrm{~L} \cdot \mathrm{Torrr}^{-1} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ |
| Avogadro constant | $\mathrm{N}_{\mathrm{A}}$ | $6.022169 \times 10^{23} \mathrm{~mol}^{-1}$ |
| Molar volume of an ideal gas | $\mathrm{V}_{\mathrm{m}}$ | $22.414 \mathrm{dm}^{3}$ |
| at $0^{\circ} \mathrm{C}$ and 1 atm |  |  |

## UNIVERSITY OF SWAZILAND

Department of Chemistry


| ${ }^{58} \mathrm{Ce}_{140.12}$ | $\operatorname{Pr}_{140,91}{ }^{60}$ | Nd | $\mathbf{P m}_{1,6,92}$ | $\operatorname{Som}_{150.36}$ | $\mathbf{E u}$ | ${ }_{154}^{64} \mathbf{G d}$ | $\mathrm{T}_{158,93}$ | Dy ${ }_{162.50}$ | ${ }_{1674}^{67}$ |  | $\mathrm{Tm}_{16893}$ |  | $\mathbf{L u}_{\text {litar }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{T h}_{232}$ | $\underset{23104}{\mathbf{P a}}$ | $\mathbf{U}_{230.0}^{\mathbf{U}}$ | $\mathrm{Np}_{23750}$ | ${ }^{94} \mathbf{P u}_{(2+4)}$ | $\mathbf{A m}_{(23,4}$ | $\mathbf{C m}_{1}$ | $\mathbf{B k}_{2+7}$ | $\mathrm{Cf}_{(251)}$ | $\mathrm{Es}_{\text {(252] }}$ | $\mathbf{F m}_{(25,5)}^{100}$ | $\underset{(258)}{\mathbf{M d}}$ | No ${ }_{\text {c } 259}$ | $\underset{\text { creol }}{\mathbf{L r}}$ |

