DEPARTMENT OF CHEMISTRY

UNIVERSITY OF SWAZILAND

JUNE 2015 SUPPLEMENTARY EXAMINATION

TITLE OF PAPER

COURSE NUMBER : C204

TIME
: INTRODUCTION TO ANALYTICAL CHEMISTRY
: 3 HOURS

Important Information : 1. Each question is worth 25 marks.
2. Answer any four (4) questions in this paper.
3. Marks for ALL procedural calculations will be awarded.
4. Start each question on a fresh page of the answer sheet.
5. Diagrams must be large and clearly labelled accordingly.
6. This paper contains an appendix of chemical constants
7. Additional material: graph paper.

QUESTION 1

a) i) What is meant by 'digestion of a precipitate'? Briefly describe what happens in the process of digesting a precipitate and give two (2) advantages of this step during gravimetric analysis.(4)
ii) What is peptization? How can this phenomenon be avoided during gravimetric analysis (3)
b) i) Explain the term 'Homogeneous precipitation'. (2)
ii) Explain two ways in which homogeneous precipitation can be achieved during gravimetric analysis. Give a specific example for each. (5)
iii) What are the unique advantages of homogenous precipitation when compared to direct precipitation? (3)
c) i) What is meant by coprecipitation in gravimetry? (2)
ii) Briefly describe three (3) different types of coprecipitation. (3)
d) Explain how the particle size of a precipitate can be controlled with reference to relative supersaturation. (3)

QUESTION 2

a) A 50.0 mL of 0.0500 M NaCl is titrated with $0.1000 \mathrm{M} \mathrm{AgNO}_{3}$. Calculate the pCl value at the following stages of the titration, given that for $\mathrm{AgCl}, \mathrm{Ksp}=1.82 \times 10^{-10}$.
i) After addition of 10.0 mL of AgNO 3
ii) At equivalence point
iii) At 26.0 mL

Plot the titration curve
b) The phosphorus in 4.258 g of a plant food was converted to $\mathrm{PO}_{4}{ }^{3}$ - and precipitated as $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ through the addition of 50.00 mL of $0.0820 \mathrm{M} \mathrm{AgNO}_{3}$. The excess AgNO_{3} was back titrated with 4.46 mL of 0.0625 M KSCN . Express the results of this analysis in terms of $\% \mathrm{P}_{2} \mathrm{O}_{5}$.

The chemical reactions are;
$\mathrm{P}_{2} \mathrm{O}_{5}+9 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{PO}_{4}{ }^{3-}+6 \mathrm{H}_{3} \mathrm{O}^{+}$
$2 \mathrm{PO}_{4}{ }^{3-}+6 \mathrm{Ag}^{+} \rightarrow 2 \mathrm{Ag}_{3} \mathrm{PO}_{4}(\mathrm{~s})$
$\mathrm{Ag}^{+}+\mathrm{SCN} \rightarrow \mathrm{AgSCN}(\mathrm{s})$
c) In determining the amount of chlorine in unknown liquid samples, a gravimetric method was used. The method involved the addition of excess silver nitrate to the analyte. The excess silver nitrate was then back titrated using sodium thiocyanide and iron (III) was used as an indicator. At equivalence point
i) What special name is given to this type of precipitation? (2)
ii) Write down all the reactions which take place during this titration. (4)
iii) What are the challenges of using this type of titration, and how can these problems - be solved? Explain (4)
$=$
*

QUESTION 3

a) The standard hydrogen electrode (SHE) is the electrode against which all electrode potentials are referenced.
(i) Draw the SHE and label all components. What is the role for the platinum? Why is it a suitable metal for this role?
(ii) What specifications should be met by the SHE?
(iii) State the function of the salt bridge and explain how it works.
b) i) Using an example differentiate between an oxidizing and reducing agent.
ii) Calculate the potential of the following cell and indicate the reaction that would occur spontaneously if the cell were short circuited.
$\mathrm{Pt}\left|\mathrm{U}^{4+}(0.200 \mathrm{M}), \mathrm{UO}_{2}{ }^{2+}(0.0150 \mathrm{M}), \mathrm{H}^{+}(0.0300 \mathrm{M}) \| \mathrm{Fe}^{2+}(0.0100 \mathrm{M}), \mathrm{Fe}^{3+}(0.0250 \mathrm{M})\right| \mathrm{Pt}$ The two half reactions are;
$\mathrm{Fe}^{3+}+\mathrm{e}-\leftrightarrow \mathrm{Fe}^{2+}$ $E^{\circ}=+0.771 \mathrm{~V}$
$\mathrm{UO}_{2}{ }^{2+}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \leftrightarrow \mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\circ}=+0.334 \mathrm{~V}$
c) What is a buffer solution? What equation is used to calculate the pH of a buffer solution? (3)
d) Draw the titration curve for the titration of $20 \mathrm{~mL}, 0.1 \mathrm{M} \mathrm{CH3COOH}$ titrated with 0.1 M NaOH . Show calculations (6)

QUESTION 4

a) The following data was obtained in the analysis of copper using flame atomic absorption spectroscopy.

conc, ppm	\% transmittance	
$=$	5.1	78.1
17.0	43.2	
25.5	31.4	
34.0	18.8	
42.5	14.5	
51.0	8.7	

Following calibration, a sample of unknown copper concentration was analysed. The measured transmittance was 35.6%.
i) Report the concentration using the graph method. (3)
ii) Use the method of least squares regression analysis of the data to calculate the slope, intercept, and concentration of the unknown. (12)
b) The calibration method used in (a) is known as external calibration. Standard addition can is an alternative calibration method which can also be used to determine the concentration of copper in a sample.
i) Outline the experimental procedure for performing standard additions, using diagrams where applicable to illustrate. (7)
ii) Explain the advantage of using the standard addition method instead of external calibration method for elemental analysis? (2)
iii) What is the disadvantage of using the standard addition method? (1)

QUESTION 5

a) Glucose levels are routinely monitored in patients suffering from diabetes. The glucose concentrations in a patient with mildly elevated glucose were determined in different
months by spectrophotometric analytical method. The following results were obtained during a study to determine the effectiveness of the diet.

Time	Glucose Concentration (mg/L)
Month 1	$1108,1122,1075,1099,1115,1083,1100$
Month 2	$992,975,1022,1001,991$
Month 3	$788,805,779,822,800$
$=$	Month 4

i) Calculate a pooled estimate of the standard deviation for the method the first two months (month 1 and month 2). (5)
ii) Is the mean glucose level obtained in month 3 significantly the same as that obtained in month 4 at 95% confidence level? (5)
iii) Determine the 95% confidence interval for the mean value for month 1. Assume that $s=19$ is a good estimate of σ. (4)
iv) What is the meaning of the results obtained in a (ii).Explain (2)
v) How many replicate measurements in month 1 are needed to decrease the confidence interval in b (ii) to $1100.3 \pm 10.0 \mathrm{mg} / \mathrm{L}$ of glucose? (4)
b) Two barrels of wine were analysed for their alcohol content to determine whether they were from different sources. On the basis of six analyses, the average content of the first barrel was established to be 12.61% ethanol. Four analyses of the second barrel gave a mean of 12.53% alcohol. The 10 analyses yielded a pooled standard deviation $\mathrm{S}_{\text {pooled }}$ of 0.070%. Do the data indicate a difference between the wines? (5)

QUESTION 6

a) The concept of CRM and or SRM is widely used by industry for their quality control
measures. Briefly explain;
i) What are CRM or SRMs (2)
ii) What is their central role in analytical chemistry?
iii) How are they certified?
b) i) Distinguish between systematic and random errors, using examples to illustrate.
ii) Suppose that 0.50 mg of precipitate is lost as a result of being washed with 200 mL of wash liquid. If the precipitate weighs 500 mg , calculate the relative error. (2)
c) Distinguish between precision and accuracy, using examples to illustrate your explanation. (3)
d) Describe the principle of "indirect titration" in analytical chemistry.(2)
e) Explain two (2) cases when back titration is preferred instead of direct titration (2)
f) 0.500 g sample containing $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is analysed by adding 50.0 ml of 0.100 M HCL , a slight excesss, boiling to remove CO_{2}, and then back-titrating the excess acid with 0.100 M NaOH . If $5.6 \mathrm{~m} \dot{\mathrm{~N}} \mathrm{\bar{a}} \mathrm{OH}$ is required for the back titration, what is the percent $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the sample? (5)

APPENDIX

VALUES OF t FOR VARIOU'S LEVELS OF PROBABILITY					
Number of Observations	Factor for Confidence Interval				
	80\%	90\%	95\%	99\%	99.90\%
1	3.08	6.31	12.7	63.7	637
2	1.89	2.92	4.3	9.92	31.6
3.	1.64	2.35	3.18	5.84	12.9
4	1.53	2.13	2.78	4.6	8.6
5	1.48	2.02	2.57	4.03	6.86
6	1.44	1.94	2.45	3.71	5.96
7	1.42	1.9	2.36	3.5	5.4
8	1.4	1.86	2.31	3.36	5.04
9	1.38	1.83	2.26	3.25	4.78
10	1.37	1.81	2.23	3.17	4.59
11	1.36	1.8	2.2	3.11	4.44
12	1.36	1.78	2.18	3.06	4.32
13	1.35	1.77	2.16	3.01	4.22
14	1.34	1.76	2.14	2.98	4.14

CRITICAL VALUES FOR REECTION QUOTIENT Q					
Number of					
Observations	90%	95%	99%		
3	0.941	0.970	0.994		
4	0.765	0.829	0.926		
5	0.642	0.710	0.821		
6	0.560	0.625	0.740		
7	0.507	0.568	0.680		
8	0.468	0.526	0.634		
9	0.437	0.493	0.598		
10	0.412	0.466	0.568		

Confidence Levels for Various Values of \mathbf{z}

Confidence Level, \%	2
50	0.67
68	1.00
	1.28
90	1.64
95	1.96
95.4	2.00
99	2.58
99.7	3.00
99.9	3.29

Table 4-5 Criticulsadues ur F. wt 5sse suofidence heret.

Degrees of	Degres of freedom for s_{1}													
freedom for x_{3}	2	3		5	6		8			12	15	20		
2	190	19.2	19.2	19.3	19.3	10.4	10.4	19.4	19,	10.4	19,4	19.4	19.3	1195
3	9.55	9.28	9.12	9.01	8.84	2.89	R.84	8.81	8.79	8.74	8.20	8.66	8.62	8.57
4	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	3.80	5.35	5.43
5	5.79	5.41:	5.19	5.05	4.85	4.88	4.82	4.77	4.74	4.63	4.62	4.56	4.50	4.36
6	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	400	3.94	3.87	3.81	3.67
7	4.74	4.35	4.12	3.97	1.87	3.79	3.73	3.68	3.64	3.58	3.51	3.44	3.38	1.23
8	4.46	4.55	3.84	3.69	3.58	3.50	3.44	339	3.35	3.28	3.22	3.15	3.88	253
9	4.26	3.86	3.63	3.48	3.37	1.29	3.23	3.18	3.14	3.07	3.01	294	2.86	271
10	4.70	3.71	3.48	3.33	3.2	3.14	3.77	3.02	298	291	2.8	277	270	2.54
11	3.98	$3.59{ }^{+}$	336	320	3.10	3.01	295	2.90	285	279	2.72	265	257	240
12	3.84	3.4)	3.26	3.11	3.00	291	285	280	275	2.69	2.62	254	2.47	230
13	381	3.41	718	3.02	202	28.3	277	271	267	260	2.53	246	238	221
14	3.4	3.34	3.11	2\%	2Ri	276	220	2.55	260	253	2.46	234	231	213
15	3.68	3.4	3.08	290	2.74	271	264	259	254	245	2.40	235	235	207
16	3.63	3.24:	7. 11	285	274	266	. 259	2.54	249	242	235	228	2.19	201
17	3.59	3.20	2\%	281	270	261	2.55	2.49	245	235	2.31	223	215	1.96
18	3.56	3.16	293	274	266	258	251	246	241	234	3.27	2.19	2.11	1.92
19	3.52	3.15	290	2.34	263	254	248	2.42	238	291	223	216	200	1.8
20	3.49	3.10	287	2.71	260	2.51	2.45	239	235	223	2.20	2.12	2.04	1.84
30	3.32	2.92	269	253	242	233	2.27	2.21	2.16	209	2.01	1.93	1.84	1.62
\%	300	2.00	237	2.21	210	2.01	1.94	1.88	1.83	1.33	1.67	1.57	1.46	1.00

USEFUL CONSTANTS

$K_{w}=1.00 \times 10^{-14}$

Ka	Acid		Base	
	Name	Formula	Formula	Name
Large	Perchloric acid	HClO	$\mathrm{ClO}_{4}{ }^{-}$	Perchlorate ion
$3.2^{*} 10^{9}$	Hydroiodic acid	HI	$\mathrm{I}-$	Iodide
$1.0^{*} 10^{9}$	Hydrobromic acid	HBr	$\mathrm{Br}-$	Bromide
$1.3^{*} 10^{6}$	Hydrochloric acid	HCl	Cl	Chloride
$1.0^{*} 10^{3}$	Sulfaric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{HSO}_{4}{ }^{-}$	Hydrogen sulfate ion
$2.4^{*} 10^{1}$	Nitric acid	HNO_{3}	$\mathrm{NO}_{3}{ }^{-}$	Nitrate ion
--	Hydronium ion	$\mathrm{H}_{3} \mathrm{O}+$	$\mathrm{H}_{2} \mathrm{O}$	Water

Ka	Acid		Conjugate Base	
	Name	Formula	Formula	Name
Large \%.	Perchloric acid	HClO_{4}	$\mathrm{ClO}_{4}{ }^{-}$	Perchlorate ion
$3.2 * 10^{9}$	Hydroiodic acid	HI	$\mathrm{I}-$	Iodide
$1.0 * 10^{9}$	Hydrobromic acid	HBr	$\mathrm{Br}-$	Bromide
1.3 * 10^{6}	Hydrochloric acid	HCl	$\mathrm{Cl}-$	Chloride
$1.0{ }^{*} 10^{3}$	Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{HSO}_{4}{ }^{\text {- }}$	Hydrogen sulfate ion
$2.4 * 10^{1}$	Nitric acid	HNO_{3}	NO_{3}	Nitrate ion
---	Hydronium ion	$\mathrm{H}_{3} \mathrm{O}+$	$\mathrm{H}_{2} \mathrm{O}$	Water
$5.4 * 10^{-2}$	Oxalic acid	$\mathrm{HO}_{2} \mathrm{C}_{2} \mathrm{O}_{2} \mathrm{H}$	$\mathrm{HO}_{2} \mathrm{C}_{2} \mathrm{O}_{2}{ }^{-}$	Hydrogen oxalate ion
$1.3 * 10^{-2}$	Sulfurous acid	$\mathrm{H}_{2} \mathrm{SO}_{3}$	$\mathrm{HSO}_{3}{ }^{-}$	Hydrogen sulfite ion
$1.0 * 10^{-2}$	Hydrogen sulfate ion	$\mathrm{HSO}_{4}{ }^{-}$	$\mathrm{SO}_{4}{ }^{2-}$	Sulfate ion
$7.1{ }^{*} 10^{-3}$	Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	Dihydrogen phosphate ion
$7.2 * 10^{-4}$	Nitrous acid	HNO_{2}	$\mathrm{NO}_{3}{ }^{-}$	Nitrite ion
$6.6 * 10^{-4}$	Hydrofluoric acid	HF	F-	Fluoride ion
$1.8 * 10^{-4}$	Methanoic acid	$\mathrm{HCO}_{2} \mathrm{H}$	$\mathrm{HCO}_{2}{ }^{-}$	Methanoate ion
$6.3 * 10^{-5}$	Benzoic acid	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}-$	Benzoate ion
$5.4 * 10^{-5}$	Hydrogen oxalate ion	$\mathrm{HO}_{2} \mathrm{C}_{2} \mathrm{O}^{2-}$	$\mathrm{O}_{2} \mathrm{C}_{2} \mathrm{O}_{2}{ }^{\text {2- }}$	Oxalate ion
$1.8 * 10^{-5}$	Ethanoic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}$	Ethanoate (acetate) ion
$4.4 * 10^{-7}$	Carbonic acid	$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{HCO}_{3}{ }^{-}$	Hydrogen carbonate ion
$1.1{ }^{*} 10^{-7}$	Hydrosulfuric acid	$\mathrm{H}_{2} \mathrm{~S}$	HS-	Hydrogen sulfide ion
$6.3 * 10^{-8}$	Dihydrogen phosphate ion	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$\mathrm{HPO}_{4}{ }^{2-}$	Hydrogen phosphate ion
$6.2 * 10^{-8}$	Hydrogen sulfite ion	HS	S^{2-}	Sulfite ion
$2.9 * 10^{-8}$	Hypochlorous acid	HClO	ClO^{-}	Hypochlorite ion
$6.2 * 10^{-10}$,	Hydrocyanic acid	HCN	CN^{+}	Cyanide ion
$5.8 * 10^{-10}$	Ammonium ion	NH_{4}^{+}	NH_{3}	Ammonia
$5.8 * 10^{-10}$	Boric acid	$\mathrm{H}_{3} \mathrm{BO}_{3}$	$\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$	Dihydrogen carbonate ion
$4.7 * 10^{-11}$	Hydrogen carbonate ion	$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2}$	Carbonate ion
$4.2 * 10^{-13}$	Hydrogen phosphate ion	$\mathrm{HPO}_{4}{ }^{2-}$	$\mathrm{PO}_{4}{ }^{3-}$	Phosphate ion
$1.8 * 10^{-13}$	Dihydrogen borate ion	$\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$	$\mathrm{HBO}_{3}{ }^{2-}$	Hydrogen borate ion
1.3 * 10^{-13}	Hydrogen sulfide ion	HS-	S^{2-}	Sulfide ion
$1.6 * 10^{-14}$	Hydrogen borate ion	$\mathrm{HBO}_{3}{ }^{2}$	$\mathrm{BO}_{3}{ }^{3-}$	Borate ion
\cdots	water	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{OH}-$	Hydroxide

PERIODIC TABLE OF ELIEMENTS

