UNIVERSITY OF SWAZILAND Faculty of Science Department of Chemistry First Semester Examination, 2014/15

Title of paper: Thermal and Electroanalytical Methods

Course code: C613

Time allowed: 3 (THREE) HOURS

Instructions:

1) Answer any Four (4) questions

2) Each question is weighted 25 marks

3) Write neatly and clearly

4) A periodic table and other useful data have been provided with this paper.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

Question 1 (25 marks)

- (a) The thermobalance is the analytical instrument used for the TG analysis of a sample:
 - (i) Braw a labeled schematic diagram of a modern type of this instrument.
 - (ii) State the five main components of the instrument.
 - (iii) Give six of the features you consider desirable in the design/construction of an ideal thermobalance. [10]
- (b) The design and operation of the thermobalance furnace are critically important in obtaining accurate and reproducible thermograms: Discuss the salient features that should be entrenched in its design to achieve these goals.
 [5] 4
- (c) A 50mg sample of $C_aC_2O_4 \cdot H_2O$ was heated to 1200°C in a thermobalance furnace:

(i)	Without being numerically or quantitatively exact, draw a fully	labeled diagram
	of the expected TG curve.	[2]
(ii)	Show the equations for the decompositional stages involved.	[3]

(iii) Calculate the magnitude of all weight losses involved. [5]

Question 2 (25 marks)

4

- (a) With respect to the following features, differentiate between TG (thermogravimetric Analysis), and DTA (Differential Thermal Analysis):
 - Their thermograms
 - Quantity measured
 - Instrument used
 - Nature of sample and reference. [4]
- (b) Why is atmospheric control a more critical factor in TG than in DTA analysis? [2]
- (c) Discuss the effects and possible corrections of three of the factors that influence DTA thermograms.
 [6]
- (d) What factors determine the choice/nature of the following during a DTA experiment.

(i) Sample holder?

(ii) Temperature measuring device? [3]

(e) A 24.60 mg sample of C_aC₂O₄ ·H₂O was heated from room temperature to 1,100°C at a rate of 5°C/min. The following mass changes with the corresponding temperature ranges were obfained:

Temp Range (°C)	Mass Loss. (mg)	
100-250	3.03	
400-500	4.72	
700-850	7.41	

Identify the gas evolved and the solid residue produced at each step of the thermal decomposition. [10]

Question 3 (25 marks)

1

(a)	(i)	Discuss the principles involved in Differential Scanning Calorimetry (DSC).								
			[3]							
	(ii)	Draw a schematic diagram of the setup of the temperature sensors and he	aters in a							
-		DSC.	[2]							
	(iii)	Distinguish between DTA and DSC with respect to their basic prince	iples and							
		instrumental setup.	[3]							
(b)	Summarize the functions of the following in the instrument setup of a DSC									
	(i)	The average temperature controller								
	(ii)	The differential temperature controller	[2]							
(c)	(i)	Draw a typical DSC Thermogram (i.e. a DSC curve).	[4]							
	(ii)	What information (data) are obtainable from a DSC scan and how	are they							
		obtained from the curve/scan?	[4]							
	(iii)	Identify the structural difference between a DTA and DSC thermogram?	[2]							

(d) The heat of fusion of naphthalene is 4.63KCal/mole at 80°C. On using 0.100g sample, a DTA peak of 36.3cm² was observed. At O°C, the heat of fusion of water is 1.43KCal/mole. What is the peak area for 0.100g of ice under similar conditions?

[5]

[2] *

Question 4 (25 marks)

- (a) The evolved gas analysis (EGA) and evolved gas detection (EGD), are often coupled with TG, DTA and DSC.
 - (i) Briefly describe what is involved in each of these (EGA & EGD) methods.
 - (ii) Give three other examples of such hyphenated techniques and one application of any one of them.[2]
- (b) For a typical thermometric experiment.
 - (i) Identify the components (parts) of a basic instrumental set up. [2]
 - (ii) Draw and label a schematic titration assembly for the TT. (2)
- (c) Briefly discuss the temperature control requirements for a Thermometric Titration.

[2]

[3]

- (d) The Thermistor is considered the ideal temperature sensing system for the TT and DIE.
 Discuss:
 - (i) Its nature and operational basis (principles). [3]
 - (ii) The factors that make it the ideal temperature sensing system for the TT and DIE.
- (e) (i) Use a diagram to show the four major regions of an ideal Thermometric Titration curve.
 [4]
 - (ii) During the titration of an acid A with a base B, a curve similar to the one drawn in e(i) above was obtained with the following slopes for the four regions respectively: 1.0 x 10⁻⁵, 8.0 x 10⁻⁴, -1.0 x 10⁻⁵ and -0.5 x 10⁻⁵ °C/sec. The overall temperature change was 0.1000°C, and the cell's heat capacity is 1.000 Cal/°C.

The titration rate was 6.0 x 10^{-8} mole/s for B. Also, under similar experimental conditions, the titration of B into distilled water gave a slope of 2.0 x 10^{-5} °C/sec. Calculate ΔH , the heat of reaction for this titration. [5]

Question 5 (25 marks)

- (a) (i) Explain the term: 'cathodic depolarizer'
 - (ii) Employing a given example, show how it is used during constant voltage electrolysis.

[5]

[1]

(iii) Discuss its mechanisms of action.

(b) (i) What is a potentiostat?

- (ii) Compare and contrast the working principles of a constant voltage electrolysis and controlled potential (constant cathode/anode potential) electrolysis. Which of the two is more selective? Explain how the enhanced selectivity is achieved by this method.
- (c) (i) Enumerate the favourable and unfavourable features of potentiometric titration method of analysis. [4]
 - (ii) The following data were obtained near the end point of a potentiometric titration of a reducing solution with 0.1000 M oxidant, using a Pt-S.C.E electrode pair:-

Titration Vol (mL)	E (mV)
38.70	541.0
38.80	547.0
38.90	555.0
39.00	566.0
39.10	583.0
39.20	884.0
39.30	1104.0
39.40	1121.0
39.50	1133.0

Obtain plots of (i) E and (ii) $\Delta E/\Delta V$, against the titrant volume and determine the end point from each of the two curves. Compare the results and comment on them. [8]

Question 6 (25marks)

- (a) Identify the difference/s between:
 - (i) Adjuniting current and residual current
 - (ii) Differential pulse polarography and square wave polarography. (4)
- (b) Explain the occurrence of a polarographic wave (i.e. the oscillating current), in the polarogram of a DME. (4)
- (c) Discuss the effects of the following factors on the polarographic shape and data during a DME polarographic experiment:
 - (i) Current maxima
 - (ii) Presence of Oxygen

Discuss steps usually taken to minimize their effects. (6)

- (d) Discuss the working principles of differential pulse polarography. Account for its enhanced sensitivity over the conventional (d.c.) polarography.
 (6)
- (e) In using the polarographic method for the estimation of the oxygen level in water, the limiting current for the first 2-electron oxygen reduction was 2.11 μ A. The capillary used had m = 2.0mgs⁻¹ and t = 5.00s at -0.05V. If the diffusion coefficient,

 $D = 2.12 \times 10^{-5} \text{cm}^2 \text{s}^{-1}$, calculate the oxygen level in the water in:

- (i) mM (millimoles/L).
- (ii) ppm.

(5)

	-			
* • •			-	
•				
	•			
	Quantity	Symbol	Value -	General data and
	Speed of light?	C	2.997 924 58 × 10 ⁶ m s ⁻¹	fundamental
alu.	Elamentary charge	72	1.502,177'X'10-13 C	-constants-
	Faraday constant	F=eN ₊	9.6435 × 10 ⁴ C mol ⁻¹	
	Boltzmann constant	*	1.390 56 × 10 ^{- אם} J K ^{- י}	 х
	Gas constant	$R = kN_{\star}$	8.314 51 J K ⁻¹ mol ⁻¹	·
	•		8.20578 × 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹	
		L	52.354 L Torr K ⁻¹ mol ⁻¹	
• .	rianck constant	() h h/2	0.820 US X 10 J S	
	Avogadro	N - W ZA Na	6.022 14 × 10 ²² mol ⁻¹	
	Atomic mass unit	и.	1.650 54 × 10 ⁻²⁷ kg	
بە ر	Mass of electron		9.109 39 × 10 ⁻³¹ kg	•
	proton	т,	1.672-62 × 10 ⁻²⁷ kg	
	neuron	m,	-1.674 93 × 10-27 kg	•
	Vacuum parmeability†	. j. Ho	$4\pi \times 10^{-7}$ T ² J ⁻¹ m ³	
	Vacuum	$z_0 = 1/c^2 \mu_0$.8.854 19 × 10 ⁻¹² J ⁻¹ C ² m ⁻¹	
	P	4πε ₉	1.112 65 × 10 ⁻¹⁹ J ⁻¹ C ² m ⁻¹	
	Bohr magneton	μ ₂ = eń/2m,	9.274 02 × 10 ⁻²⁴ J T ⁻¹	· ·
	magneton	рн ж ти 4 тт,	0.000 20 0.000 20 0 10 0 1 1 1	
	value	G .		
	Boar radius Rydberg	ε₂ = 4πεαh²/m,ι R , = m,s⁴/8h³ α	5.291 77 × 10 ⁻¹ ' m 1.097 37 × 10 [*] cm ⁻¹	
· .	Fine structure	$c = \mu_0 e^2 c/2h$	7.297 35× 10-3	
	Grevitational	G	6.672 59 × 10 ⁻¹¹ N m ² kg ⁻¹	
	Standard t acceleration of free fall?	. 9 .	9,805 65 s ^{-?}	t Exact (defined) values
	f P	n µ m	cdk MG	Prefixes
	• • • • • • • • •			•

PERIODIC TABLE OF ELEMENTS

GROUPS																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
PERIODS	1	IIA	11113	IVB	VB	VIB	VIII		VIIIB		1B	HB	IIIA	IVA	٧٨	VIA	, VIIA
	1,008										·						
	11						ŧ										
	1		-				-										
	6.941	9.012							•		Atom	ic mass –	10.811	12.011	14.007	15.999	18.998
. 2	Li	Be	1	, · ·				Symbol —			-I► B	C	N	0	F		
	3	4	1			•					Aton	nic No. T	s s	6	7	8	9
	22.990	24.305	1				,						26.982	28.086	30.974	32.06	35.453
3	Na	Mg		TRANSITION ELEMENTS								AI	Si	P	s	CI	
	11	12										13	14	15	16	17	
<u> </u>	39.098	-40.078	44.956	47.88	50.942	51,996	54.938	55.847	58,933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
-	19.	20	21	22	23	24	25	26	27	28	29	30.	31	32	33	34	35
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101.07	102,91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90
5	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	i In	Sn	Sb	Te	1
	37	- 38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)
6	Cs	Ba	*Ln	III	Ta	W	Rc	Os	Ir	Pt	Au	Ilg	TI	РЬ	BI	Po	AL
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)							
7	Fr	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun							
	87	88	89	104	105	106	107	108	109	110	1						
1								· · · ·		-	در.						
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
*La	*Lanthanide Series			Cc	. Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			-	58	59	60	61	62	63	64	65	66	67	68	69	70	71
** Actinide Series				232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
				Th	Pa	U	Np	Pu	Am	Cm	Bk	10	Es	Fm	Md	No	Lr
			90	91	92	93 。	94	95	96	97	98	99	100	101	102	103	
							· · · · · · · · · · · · · · · · · · ·		1								

() indicates the mass number of the isotope with the longest half-life.

••• • •

•