UNIVERSITY OF SWAZILAND FIRST SEMESTER EXAMINATION, 2014/2015

TITLE OF PAPER	:	Special Analytical Techniques
COURSE CODE	:	C614
TIME ALLOWED	:	Three (3) Hours.
INSTRUCTIONS	:	Answer any <u>Four</u> (4) Questions. Each Question Carries 25 Marks
		~

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

- (a) Briefly, discuss the interactions of the following radiations with matter
 - (i) β-rays [10]
 - (ii) γ-rays [15]

Question 2 (25 marks)

- (a) A commonly employed activation method is the 'Neutron Activation Analysis', (NAA). For this method (i.e NAA):
 (i) Distinguish between the two types i.e RNAA and INAA. [2]
 - (ii) Discuss the general principles of this method and the general steps usually taken when employing this method.
 - (iii) Identify the main sources of neutrons for this method. [3]
 - (iv) Give three advantages and two limitations of this method [5]
 - (v) Summarize the procedure for the INAA (instrumentation neutron activation analysis).
- (b) A 0.500-g sample of newly developed Ni alloy and 1.00-g of a standard alloy were set up in a nuclear reactor for irradiation with neutrons. On completion of irradiation, both the sample and the standard were allowed to cool. Their activities were found to be 1020 counts/min for the sample and 3540 counts/min for the standard. If the standard was known to contain 5.93% w/w Ni, calculate the % w/w Ni in the new alloy, using the method of external standards.

Question 3 (25 marks)

- (a) For the 'Isotope Dilution Analysis' :
 - (i) Summarize the usual general procedure for the method. [2]
 - (ii) Enumerate the requirements for a successful application of this method. [3]
 - (iii) Discuss the specific procedural steps involved when employing the Direct Isotope Dilution analysis for the particular analysis.
 [4]
- (b) Summarize the advantages and limitations of the following isotope dilution analytical methods:
 - (i) Direct Isotope dilution analysis, (DIDA).
 - (ii) Indirect isotope dilution analysis, (IIDA).
 - (iii) Radiorelease method of analysis.

[9]

[4]

(c) During an isotope dilution experiment for the determination of the concentration of insulin in a sample, a 1.00-mg sample of insulin labeled with ¹⁴C, with an activity of 549 counts/min was added to a 10.00mL sample. After an adequate sample homogenization, a portion of the insulin was separated and purified, producing 18.30mg of pure insulin. The measured activity of the isolated insulin was 148 counts/min. Calculate the amount of insulin (in mg), present in the original sample. [7]

QUESTION 4 [25]

- (a) State the difference between "batch extraction" and "continuous extraction" in analytical chemistry. (2)
- (b) Metal chloro complex MCl₃ is extremely soluble in ether, with the distribution coefficient for a water/ether system being 50. Calculate the concentration of MCl₃ left in 50ml of aqueous 0.01MFeCl₃ solution after extraction
 - (i) once with a 10-mL portion of ether (1)
 - (ii) once with a 20--mL portion of ether (1)
 - (iii) twice with 10mL portions of ether (1)
- (c) Describe two ways of recovering analytes from an organic solvent during the stripping stage of solvent extraction. (4)
- (d) Flow injection analysis with atomic absorption detection is a hyphenated analytical technique used to measure hexavalent chromium in waste water sludges.
 - (i) Draw and label an FIA system. (4)
 - (ii) Use diagrams to describe the concept of the "Nernst Diffusion Layer" in flow injection analysis. (4)
 - (iii) Use drawings to explain how a phase separator works in flow injection analysis. (4)
 - (iv) How is quantification of Cr (VI) carried out in an FIA-AAS instrument? (4)

QUESTION 5 [25]

- a. The inductively coupled plasma, coupled to a mass spectrometer, is one of the most useful hyphenated techniques in use today.
 - (i) Use diagrams to explain how the excitation temperatures of the ICP are measured. (4)
 - (ii) What excellent characteristics make the ICP an ideal source for analytical mass spectrometry? (2)
- b. There are certain operational difficulties associated with coupling a quadrupole unit to an ICP.
 - (i) Draw a schematic diagram of an ICP-MS instrument that uses a quadrupole unit, and explain how ions from the ICP are separated in the quadrupole unit. (4)
 - (ii) Use diagrams to explain how the interface in an ICP-MS instrument works. (3)
 - (iii) How are the ions coming out of the quadrupole detected? (3)
- c. Discuss each of the following interferences in ICP-MS
 - i) Isobaric interferences (3)

- ii) Polyatomic interferences (3)
- iii) Doubly charged ion interferences (3)

QUESTION 6 [25]

- (a) Use a diagram to explain why a double focusing magnetic analyzer is superior over a single focusing instrument in GC-MS. (3)
- (b) The interface is very important in coupling a GC to a mass spectrometer.
 - (i) Use a diagram to explain how direct coupling works, and describe the most appropriate columns for this type of interfacing. (4)
 - (ii) Use a diagram to explain how a jet separator works in GC-MS. (3)
 - (iii) Use a diagram to explain how an effusion separator works in GC-MS (3)
- (c) Ionization of analytes from a gas chromatograph is one of the most essential steps prior to introduction into a mass analyzer.
 - (i) Use a diagram to explain how electron ionization is achieved in GC-MS. (3)
 - (ii) Use a diagram to explain how chemical ionization is achieved in GC-MS. (3)

(d) In HPLC-MS,

- (i) Explain how flow splitting is achieved. (3)
- (ii) Use a diagram to explain how electrospray ionization is achieved.(3)

Speed Elame char Farada con Boltzn con Gas co Pland Avog con Ator un Mass eld pr Nac Vac St	d of light; entary inge lay istant mann istant constant constant ck constant gadro instant mic mass nit	c $F = eN_{\lambda}$ k $R = kN_{\lambda}$ h $h = h/2\pi$ N_{λ} u	•	2.997 924 1.602.177 9.6435 × 1 1.350 66 × 8.314 51 × 8.205 78 × 52.364 L 5.626 08	58 × 1 × 10 ⁻¹ C r × 10 ⁻² J K ⁻¹ r × 10 ⁻² drm Torr K × 10 ⁻²	0 ⁶ m s ¹³ C nol ⁻¹ ³ J K ⁻ nol ⁻¹	K ⁻¹ mo	fr -C	undament: onstants-	al 	
Elama char Farada con: Boltzm con Gas co Planc Avog con Atom un Mass ela pr Naci pa Vaci pa Soh Nuc Gr Con Con Atom un Soh	entary Irge Iay Istant Istant Istant Constant Ck constant gadro Instant Thic mass Thit	$F = eN_{\perp}$ k $R = kN_{\perp}$ h $h = h/2\pi$ N_{\perp}		1.350 66 × 8.314 51 × 8.205 78 5 52.364 L 5.626 08	10 ⁴ C r 10 ⁴ C r × 10 ⁻² J K ⁻¹ r × 10 ⁻² drm Torr K × 10 ⁻²	¹³ C nol ⁻¹ ² J K ⁻ nol ⁻¹ ¹ ² aun ²	۲ ۲	-C	onstants-		
Farada con Boltan con Gas co Planc Avog con Atom un Mas: ela pr ne Vac pe Vac pe Soh Ryc co fin Cr	lay Istant mann Istant constant ck constant gadro Instant mic mass it	$F = eN_{\perp}$ k $R = kN_{\perp}$ h $h = h/2\pi$ N_{\perp} u	•	9.6435 × 1 1.350 66 × 8.314 51 × 8.205 78 × 62.364 L 5.626 08	10 ⁴ C r × 10 ⁻² J K ⁻¹ r × 10 ⁻² drm Torr K × 10 ⁻¹	nol ⁻¹ - J K- nol ⁻¹ - aun - mo	K ⁻¹ mo	1-1	·		
Boltzn con Gas c Planc Avog con Atom un Mass ela pr ne Vact pa Vact pa Soh Nuc fin C C C Tin C C C	mann Istant Constant ck constant gadro Instant mic mass iit	k R = kN, h h = h/2.x N, u		1.350 66 × 8.314 51 × 8.205 78 5 52.364 L 5.626 08	× 10 ⁻² J K ⁻¹ r × 10 ⁻² drm Torr K × 10 ⁻¹	-3 J K- nol-1 - - - - - - - - - - - - - - - - - -	۲ ۲	1-1		•••	
Gas d Pland Avog con Atom un Mass ela pr Vact pe Vact pe Soh Nuc fin C Gr	ck constant gadro instant mic mass nit	R = kN, h h = h/2.x N, u	•	8.31451 8.20578 52.3641 5.62608	J K ⁻¹ r × 10 ⁻² drm Torr K × 10 ⁻²	nol1 L l atra C mo	K ⁻¹ mo	1-1			
Plance Avog con Atom un Mass ele pr Naci pe Vaci pe Vaci pe Soh Ryo C Gr	ck constant gadro instant mic mass nit	ስ ስ = ከ/2π Ν _λ	·	8.20578 52.3541 5.62608 1.05457	× 10 ⁻² drn To <i>rr</i> K × 10 ⁻²	" aun " aun " mo	K ⁻¹ mo	1-1			
Plance Avog con Atom un Mass els pr ne Vact pe Vact pe Soh Nuc fin Con St	ck constant gadro instant mic mass nit	ね た = カ/2ポ N ₂		52.364 L 5.626 08 1.054 57	Torr K x 10 ⁻¹	⁻¹ mo					
Planc Avog con Atom un Mass ela pr Vact pe Vact pe Vact pe Soh Ryo C Gr	ck constant gadro instant nic mass iit	ћ ћ= ћ/2 <i>π</i> М _ж		5.626 08 1.054 57	× 10-		1-1-1	-		-	
Avog con Atom un Mass ela pr Naci pa Vaci pa Vaci pa Soh Ryo C Fin C C St	gadiro Instant mic mass nit	ħ=h/2π Ν _κ		1.054 57		Js					
Avog con Ator un Mass eld pr ne Vacu pe Vacu pe Soh Nuc fin Con Con St	gadro Instant mic mass nit	N _k			× 10-	Js					
Atom un Mas: eld pr ne Vact pe Vact pe Soh Nuc Eler v Boh Ryc c Fin C Cr	nic mass tit	u		5.022.14	× 10 ²³	'mol	•1				
Mass etc pr Ne Vacu Pd Soh Nuc Elev Soi Ryo C C Fin C St		•		1.660 54	× 10-	²⁷ kg				•	
eia pr ne Vaci pa Vaci pa Soh Nuc fin Elei v So Fin Co	s of					1.7				•	
Pri Ne Vacu Pri Soh Nuc fin Co Fin Co St	ectron	m,		3.103.33		xg			-		
Vacu pe Vacu pe Soh Nuc fin Ster St		т <u>э</u>	in .			n xg				• •	
Period Vaci Pa Boh Nuc n Eler V Boi Ryc C C Fin C C St	20000	(#1m		1.0/4 53	-7 1.2	~ ×g			· ·		
Vac Pr Boh Nuc Tie V Boi C C Fin C C C C C C C C C C C C C C C C C C C	ermeabiiity†	, pa		4 <i>m</i> × 10)-7 T ² J	د [_]			•	· .	
Boh Nuc n Elen V Boi Ryc C Fin C Cr	ะบบกา	$z_0 = 1/c^2 \mu_0$	-	.8.854 1	9 × 10	-12 J-	' C² m~	ı,			
Boh Nuc T Elec Station Byo Gr Gr St	erinittivity	4.77.60		1,1126	5 x 10	-10 ['] j	1 C2 m-	، `		• •	
Nuc r Elec v Boi Ryc c Fin c Gr St	hr magneton	μ ₃ = εή/2m.		9-274 02 × 10 ⁻²⁴ J T ⁻¹ 5.050 79 × 10 ⁻²⁷ J T ⁻¹						•	
Elec V Boi Ryc C Fin C Gr St	nagneton	$\mu_{H} = ti/2n$									
Boi Ryc Fin Gr St	Electron g value Bonr radius		g. $s_2 = 4\pi \varepsilon_0 h^2/m_{\pi} \varepsilon$								
Ryo c Fin C Gr St						m ^{۱۱} ۳					
Fin Gr St	dberg constant	R.= m,e*/	1.097 37 × 10 ^{\$} cm ⁻¹								
Gr St	Fine structure constant Gravitational constant		$c = \mu_0 a^2 c/2h$)- <u>,</u>	•				
St			G			0 ⁻¹¹ N	m² kg-	-2			
Standard acceleration		. <i>9</i> .	9.805 55 11 2 - 3					•			
	of free failt						•		t Exact (define	d) velues	
		n µ	m	c	đ	k	М	G	Prefixes	;	
fi	fp	nano micro	milli	centi	deci	kilo	mega	giga		٠	

· •

.*

PERIODIC TABLE OF ELEMENTS

	GROUPS																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
PERIODS	IA	111	1113	IVN	VB	VIN	VIIN	•	VIII		10	1113	IIIA	IVA	V۸	VIA	VIIA
1	1,008	1	•	,	• *		• •	· · ·	•	,, <u>,</u> , , ,	•	• •• •••	·				
1 1	11	[
	6,941	9.012							•'		Ator	nic mass -	-)- 10.811	12.011	14.007	15.999	18.998
. 2	Li	Be	1			• ·					Symbol 🗕 🕨 B			C C		0	F
	3	4	4 Atomic No.											6	7	8	9
	22.990	24.305	1										26.982	28.086	30.974	32.06	35.453
1 3	Na	Me	MI TRANSITION ELEMENTS											Si	P	S	CI
	11	12												14	15	16	17
	10.008	.4/1 078	AA 056	17 99	50.042	51 000	54 029	55 847	58 017	58.60	67 546	65 10	69 721	72 61	74 077	78.96	79 904
	17.075	Ca	Qn	-17.88 T'i	V 30.542	Cr	M.	II.o.	Co	NI NI	C.	7 n	Go	Go	Ae	Se	Br
	19	20	21	27	27	24	25	26	27	28	20	20	11	12	11	34	35
	85 468	\$7.62	88 906	01 224	· 07 006	05.04	08 007	101.07	107.01	106.42	107 87	112 41	114 82	118.71	121.75	127.60	126.90
	1215	Se	v v	7.	NI	Mo	To.	Du	Dh	Pa	101.01	Cd	In	Sn	Sh	Te	1
->	37	- 1g	70	40		17	47			46	47	48	49	50	51	52	53
	132.01	117.77	118 01	178 40	190.05	192.05	19621	100.2	107 77	105.08	106.07	200 50	204 18	207.2	208.98	(209)	(210)
	Ce	120	*1.0	1.10	To.75	W N	D.21	0.2	Ir.	D4	190.97	100.3V	71	Ph	Ri	Po	At
0	55	56	57	77	71	74	75	76	77	78	70	RO	81	82	83	84	85
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)			·	I			
7	Fr	Ra	**Ac	R	Ha	Unh	Uns	Uno	Une	Uun	•						
	87	88	89	104	105	106	107	108	109	110							
L_	ł_	L		L	L	l	1	l	I								
140 13 [140 01] 144 24 [1146] 1 160 26 [161 06] 162 26 [160 02] 162 00] 162 26 [160 02]													172 04	174.07			
*Lanthanide Series				PI0.12	140.91 D	81.3	(14J) D	1.0.20	131.50	03	(20.95 TT-	D.,	104.25	107.20	T	VI.	1/4.27 1
			CC	, rr	Na (101	om G	Eu	Ga	10.	Dy	r10	Lr 69	1111	20	71	
								02	ره	04	0.7	00	07			- 10	/ I
**Actinide Series				232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257) *	(258)	(259)	(260)
				Th	Pa	υ	Np	Pu	Am	Cm	Bk	Ci	Es	Fm	Md	No	Lr
	1	90	91	92	93 。	94	95	96	97	98	99	100	101	102	103		

() indicates the mass number of the isotope with the longest half-life.