UNIVERSITY OF SWAZILAND FINAL EXAMINATION ACADEMIC YEAR 2015/2016

....

.

TITLE OF PAPER:	INTRODUCTORY INORGANIC CHEMISTRY
COURSE NUMBER:	C201
TIME ALLOWED: INSTRUCTIONS:	THREE (3) HOURS
1. Then (4) of mar	re are six (6) questions. Answer any four questions. Each question is worth 25 ks.
2. Begi page	n the solution to each question on a new

A periodic table, a table of constants and a copy of Slater's Rules have been provided with this examination paper.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

- a) Consider two **hydrogen-like** species, Li^{2+} and B^{4+} .
 - i) Write the ground state electronic configuration for the two ions
 - ii) In which one of the two species is the electron closer to the nucleus? Explain your answer.
 - iii) Which atomic species has lower potential energy? Explain your answer.
 - iv) Which atomic species has higher ionization energy?

[8]

[5]

- b) If the minimum value of m_t for an electron in an atom is -4, what is the smallest value of ℓ that the electron could have? What is the smallest value of n that an electron could have? [2.5]
- c) Sketch pictures of two d orbitals in the xy-plane which coincides with the plane of the paper.
- d) Consider the orbital function

 $\psi(\mathbf{r},\theta,\phi) = (4-\rho)\rho(e^{-\rho})\sin\theta\cos\phi$

where $\rho = 2zr/na_0$. Use this information to answer the following questions:

- i) Write down the angular, radial and the radial distribution functions.
- ii) Evaluate the angular function in the directions, +x, -x, +y and -y and deduce the orientation of the orbital. [Help: In the directions +x, -x, +y and -y, the values of ϕ are 0° , 180° , 90° and 270° respectively].

[7]

[2.5]

Question Two

a) Given that the energy of an electron in an orbital corresponding to quantum number n is given by

 $E_n = -(Z^*)^2 R_H / n^2$,

derive the expression for the energy required to ionize an electron from any orbital with quantum number n_1 .

[6]

- b) For each of the 3s and $5d_{xz}$ atomic orbitals, sketch:
 - a) The radial function R(r)
 - b) The radial distribution function P_r
 - c) The angular function, $Y(\theta, \phi)$, in a suitable plane

In each case indicate the presence of the nodes, if any.

[13]

c). Give the electron configuration for the following:

i) Ru ii) Sm iii) As³⁻

[6]

[9]

[7]

Question Three

a) For each of the following species, write the electronic configuration and determine the number of unpaired electrons:

i) Cu^{2+} ii) Mn^{2+} iii) Eu^{2+}

- b) Calculate the effective nuclear charge for a valence electron in each of the atoms N, O and F. Explain your results in terms of any trends.
- c) Outline the Born-Haber cycle and calculate the enthalpy of formation for CsI(s) given the following data:

Sublimation of Cs(s)	+76.7 kJmol ⁻¹
Sublimation of iodine	. +62.34 kJmole ⁻¹
Ionization of Cs(g)	+375.7 kJmol ⁻¹
Dissociation of I ₂ (g)	+78.99 kJmol ⁻¹
Electron affinity of I(g)	–328 kJmol ⁻¹
Lattice energy of CsI(s)	. – 758.1 kJmol ⁻¹
	10

[9]

Question Four

- a) State the defining characteristics of each of the following:
 - i) A bonding sigma (σ) molecular orbital
 - ii) An anti-bonding sigma (σ^*) molecular orbital
 - iii) A bonding pi (π) molecular orbital

٩

[6]

b) State the orientation of the following orbitals for optimum overlap:

• `		•••		141
1 \	A sigma-type orbital	11)	A ni-tune orbital	E 21
11	A Signa-lybe of ondia	111	A DI-LYDC OLULIAI	141
	0 71			1-1

- c) Suggest two ways by which atoms may be stabilized in compounds or molecules. Give one example of each case. [3]
- d) Sketch a molecular orbital energy level diagram for a cyanide ion, CN⁻, and use the diagram to answer questions that follow below.
 - i) Write electronic configurations for the species CN, CN^{-} and CN^{3-} .
 - ii) Calculate bond orders for the species in i) above
 - iii) List the species in order of increasing bond length, starting with the one with the shortest bond length
 - iv) State whether each of the species is paramagnetic or diamagnetic. Explain your answer.

Question Five

- a) For each of the following species, determine overall geometry, molecular geometry and hybridization of atomic orbitals around the central atom.
 - i) SOF₄ ii) XeF₄
- b) Consider the molecule XeO_3F_2 , where Xe is the central atom.
 - i) Write at least four non-equivalent Lewis (i.e. resonance) structures.
 - ii) Use formal charges to determine which one of the structures from i) above is expected to be the most stable.

c) Draw a Lewis structure for each of the following, after determining the value of x:

- (i) The cyclic silicate ion, $Si_xO_{12}^{8-}$
- (ii) The cyclic silicate ion, $Si_xO_{18}^{12}$

[7]

[10]

4

[14]

[8]

Question Six

- a) Consider the elements Li, Be, B, N, F, Ne.
 - i) Which ones exist as diatomic molecules in the gaseous state at room temperature?
 - ii) Which ones form a chloride of formula XC1₃?
 - iii) Which one has largest first ionisation energy?
 - iv) Which has the smallest second ionisation energy?
 - v) Which ones form hydrides that dissolve in water to give an alkaline solution?
 - vi) Which one forms an amphoteric hydroxide?

[8]

- **b)** Element Y has an atomic number of 31. Use your knowledge of chemical periodicity to answer the following questions about Y.
 - i) Write the electronic (s, p, d, f) configuration for Y.
 - ii) Is element Y in the's-block', 'p-block' or'd-block'?
 - iii) What is the principal oxidation number of Y?
 - iv) What is the probable formula of the oxide of Y?
 - v) Is the oxide of Y likely to be acidic, amphoteric or basic?
 - vi) Write the equation for a reaction which the oxide of Y would undergo with an aqueous solution of sodium hydroxide.

[8]

c) Each compound in list 1 has a matching description in list2. Correctly match the partners. There is only one correct statement for each compound.

<u>List 1</u>	List 2
K	Polymeric in the solid state
F ₂	Soda lime
Be(OH) ₂	A superoxide
CaO	A covalent hydride
AsH ₃	Reacts with water violently
BeC1 ₂	Amphoteric
CsO ₂	Quicklime
Ca(OH) ₂ /NaOH	A strong oxidizing agent

[4]

d) Briefly discuss the diagonal relationship between Be and Al. Give two examples of chemical properties that illustrate their similarities.

[5]

C201 Data

Slater's Rules:

1) Write the correct electron configuration for the atom and organize the orbitals into groupings as follows:

(1s)(2s,2p)(3s,3p) (3d) (4s,4p) (4d) (4f) (5s,5p), etc

2) Any electrons to the right of the electron of interest contributes zero to shielding.

3) All other electrons in the same grouping (or same principal quantum number, \mathbf{n}) as the electron of interest shield to an extent of 0.35 nuclear charge units

4) If the electron of interest is an *s* or *p* electron:

Each of the electrons with one less value (**n-1**)of the principal quantum number shield to an extent of 0.85 units of nuclear charge. Each of the electrons with two less values (**n-2**) of the principal quantum number shield to an extent of 1.00 units.

5) If the electron of interest is an d or f electron:

Each of the electrons to the left shield to an extent of 1.00 units of nuclear charge.

6) Sum the shielding amounts from steps 2 through 4 or 5 and subtract from the nuclear charge value to obtain the effective nuclear charge:

 $Z_{\text{eff}} = Z - S$

where

 $Z_{eff} = effective nuclear charge$

Z = atomic number

S = shilelding constant

PERIODIC TABLE OF THE ELEMENTS

GROUPS

													·····					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIII		1B	IIB	IIIA	IVA	• VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.180 Ne 10
3	22.990 Na 11	^{24.305} Mg 12			TF	RANSI	TION	ELEM	IENTS	i			26.982 Al 13	28.0855 Si 14	30.9738 P 15	32.06 S 16	35.453 Cl 17	^{39.948} Ar 18
4	^{39.0983} K 19	40.078 Ca 20	44.956 Sc 21	47.88 Ti 22	50.9415 V 23	51.996 Cr 24	54.938 Mn 25	55.847 Fe 26	58.933 Co 27	58.69 Ni 28	63.546 Cu 29	65.39 Zn 30	69.723 Ga 31	72.61 Ge 32	74.922 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.468 Rb 37	87.62 Sr 38	88.906 Y 39	91.224 Zr 40	92.9064 Nb 41	95.94 Mo 42	98.907 Tc 43	101.07 Ru 44	102.906 Rh 45	106.42 Pd 46	107.868 Ag 47	112,41 Cd 48	114.82 In 49	118.71 Sn 50	121.75 Sb 51	127.60 Te 52	126,904 I 53	131.29 Xe .54
6	132.905 Cs 55	137.33 Ba 56	138.906 *La 57	178.49 Hf 72	180.948 Ta 73	183.85 W 74	186.207 Re 75	190.2 Os 76	192,22 Ir 77	195.08 Pt 78	196.967 Au 79	200.59 Hg 80	204.383 TI 81	207.2 Pb 82	208.980 Bi 83	(209) Po 84	(210) At 85	(222) Rn 86
7	(223) Fr 87	226.025 Ra 88	(227) **Ac 89	(261) Rf 104	(262) Ha 105	(263) Unh 106	(262) Uns 107	(265) Uno 108	(266) Une 109						*			· · · · · · · · · · · · · · · · · · ·
								r										1
* Lanthanide	series			140.115 Ce 58	140.908 Pr 59	144.24 Nd 60	(145) Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.925 Tb 65	162.50 Dy 66	164.930 Ho 67	167.26 Er 68	168.934 Tm 69	173.04 Yb 70	174.967 Lu 71	
				232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	

Np

Pu

94

Am

95

Cm

96

Bk

97

Cf

98

Es

99

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are , based on the assigned relative atomic mass of ${}^{12}C = exactly 12$: () indicates the mass number of the isotope with the longest half-life.

** Actinide series

i

Th

90

Pa

91

U

92

-

SOURCE: International Union of Pure and Applied Chemistry, J. Mills, ed., *Quantities*, *Units, and Symbols in Physical Chemistry*, Blackwell Scientific Publications, Boston, 1988, pp 86-98.

Md

101

No

102

Lr

103

Fm

100

Fundamental Physical Constants (six significant figures)

Avogadro's number	$N_{\rm A} = 6.02214 \times 10^{23} / {\rm mol}$
atomic mass unit	$amu = 1.66054 \times 10^{-27} \text{ kg}$
charge of the electron (or proton)	$e = 1.60218 \times 10^{-19} \text{ C}$
Faraday constant	$F = 9.64853 \times 10^4 \text{ C/mol}$
mass of the electron	$m_e = 9.10939 \times 10^{-31} \text{ kg}$
mass of the neutron	$m_{\rm n} = 1.67493 \times 10^{-27} \rm kg$
mass of the proton	$m_{\rm p} = 1.67262 \times 10^{-27} \rm kg$
Planck's constant	$h = 6.62607 \times 10^{-34} \text{J} \cdot \text{s}$
speed of light in a vacuum	$c = 2.99792 \times 10^8 \text{ m/s}$
standard acceleration of gravity	$g = 9.80665 \text{ m/s}^2$
universal gas constant	R = 8.31447 J/(mol·K)
	$= 8.20578 \times 10^{-2} (atm \cdot L)/(mol \cdot K)$

Rydberg constant = $1.097 \times 10^7 \text{ m}^{-1}$

SI Unit Prefixes

р	n	μ.	m	$\{ [\mathbf{c}_{i}]_{i=1}^{n} : i \in \mathbb{N} : i \in \mathbb{N} : \mathbf{d} \in \mathbb{N} : \mathbf{d}$	k k	М	G
pico-	nano-	micro-	milli-	centi- deci-	kilo-	mega-	giga-
10^{-12}	10-9	10 ⁻⁶	10 ⁻³	10^{-2} 10^{-1}	× 10 ³	106	109

Conversions and Relationships

Length SI unit: meter, m	Volume SI unit: cubic meter, m ³	Pressure SI unit: pascal, Pa
1 km = 1000 m = 0.62 mile (mi)	$1 \text{ dm}^3 = 10^{-3} \text{ m}^3$ = 1 liter (L)	$1 Pa = 1 N/m^2$ $= 1 kg/m \cdot s^2$
1 inch (in) = 2.54 cm 1 m = 1.094 yards (yd) 1 pm = 10^{-12} m = 0.01 Å	$= 1.057 \text{ quarts (qt)}$ $1 \text{ cm}^3 = \text{I mL}$ $1 \text{ m}^3 = 35.3 \text{ ft}^3$	1 atm = 1.01325×10^{5} Pa = 760 torr 1 bar = 1×10^{5} Pa
Mass SI unit: kilogram, kg $1 \text{ kg} = 10^3 \text{ g}$ = 2.205 lb $1 \text{ metric ton (t)} = 10^3 \text{ kg}$	Energy SI unit: joule, J $1 J = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2$ = 1 coulomb-volt (1 C·V) 1 cal = 4.184 J $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	Math relationships $\pi = 3.1416$ volume of sphere $= \frac{4}{3}\pi r^3$ volume of cylinder $= \pi r^2 h$
	Temperature SI unit: kelvin, K 0 K = -273.15°C mp of H_2O = 0°C (273.15 K) bp of H_2O = 100°C (373.15 K) T (K) = T (°C) + 273.15 T (°C) = [T (°F) - 32]_5^5 T (°F) = $\frac{9}{5}T$ (°C) + 32	