UNIVERSITY OF SWAZILAND
 FINAL EXAMINATION

ACADEMIC YEAR 2015/2016
TITLE OF PAPER: INTRODUCTORY INORGANICCHEMISTRY
COURSE NUMBER: C201
TIME ALLOWED: THREE (3) HOURS
INSTRUCTIONS:

1. There are six (6) questions. Answer any four (4) questions. Each question is worth 25 marks.
2. Begin the solution to each question on a new page

A periodic table, a table of constants and a copy of Slater's Rules have been provided with this examination paper.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

Question One

a) Consider two hydrogen-like species, Li^{2+} and B^{4+}.
i) Write the ground state electronic configuration for the two ions
ii) In which one of the two species is the electron closer to the nucleus? Explain your answer.
iii) Which atomic species has lower potential energy? Explain your answer.
iv) Which atomic species has higher ionization energy?

[8]

b) If the minimum value of m_{ℓ} for an electron in an atom is -4 , what is the smallest value of ℓ that the electron could have? What is the smallest value of n that an electron could have?
c) Sketch pictures of two d orbitals in the xy-plane which coincides with the plane of the paper.
[5]
d) Consider the orbital function

$$
\psi(r, \theta, \phi)=(4-\rho) \rho\left(e^{-\rho}\right) \sin \theta \cos \phi
$$

where $\rho=2 \mathrm{zr} / \mathrm{na}_{0}$. Use this information to answer the following questions:
i) Write down the angular, radial and the radial distribution functions.
ii) Evaluate the angular function in the directions, $+\mathrm{x},-\mathrm{x},+\mathrm{y}$ and -y and deduce the orientation of the orbital. [Help: In the directions $+\mathrm{x},-\mathrm{x},+\mathrm{y}$ and -y , the values of ϕ are $0^{\circ}, 180^{\circ}, 90^{\circ}$ and 270° respectively].

Question Two

a) Given that the energy of an electron in an orbital corresponding to quantum number n is given by
$E_{n}=-\left(Z^{*}\right)^{2} R_{H} / n^{2}$,
derive the expression for the energy required to ionize an electron from any orbital with quantum number n_{1}.
b) For each of the 3 s and $5 \mathrm{~d}_{\mathrm{xz}}$ atomic orbitals, sketch:
a) The radial function $R(r)$
b) The radial distribution function P_{r}
c) The angular function, $\mathrm{Y}(\theta, \phi)$, in a suitable plane

In each case indicate the presence of the nodes, if any.
c). Give the electron configuration for the following:
i) Ru ii) Sm iii) As^{3-}

Question Three

a) For each of the following species, write the electronic configuration and determine the number of unpaired electrons:
i) Cu^{2+}
ii) $\quad \mathrm{Mn}^{2+}$
iii) Eu^{2+}
[9]
b) Calculate the effective nuclear charge for a valence electron in each of the atoms N, O and F . Explain your results in terms of any trends.
[7]
c) Outline the Born-Haber cycle and calculate the enthalpy of formation for $\operatorname{CsI}(\mathrm{s})$ given the following data:

(s)	$6.7 \mathrm{kJmol}^{-1}$
Sublimation of iodine.	$+62.34 \mathrm{kJmole}^{-1}$
Ionization of $\mathrm{Cs}(\mathrm{g})$	$+375.7 \mathrm{kJmol}^{-1}$
Dissociation of $\mathrm{I}_{2}(\mathrm{~g})$	$+78.99 \mathrm{kJmol}^{-1}$
Electron affinity of $\mathrm{I}(\mathrm{g})$	-328 kJmol^{-1}
Lattice energy of CsI(s)	$-758.1 \mathrm{kJmol}^{-1}$

Question Four

a) State the defining characteristics of each of the following:
i) A bonding sigma (σ) molecular orbital
ii) An anti-bonding sigma (σ^{*}) molecular orbital
iii) A bonding pi (π) molecular orbital
[6]
b) State the orientation of the following orbitals for optimum overlap:
i) A sigma-type orbital
ii) A pi-type orbital
[2]
c) Suggest two ways by which atoms may be stabilized in compounds or molecules. Give one example of each case.
d) Sketch a molecular orbital energy level diagram for a cyanide ion, CN^{-}, and use the diagram to answer questions that follow below.
i) Write electronic configurations for the species $\mathrm{CN}, \mathrm{CN}^{-}$and CN^{3-}.
ii) Calculate bond orders for the species in i) above
iii) List the species in order of increasing bond length, starting with the one with the shortest bond length
iv) State whether each of the species is paramagnetic or diamagnetic. Explain your answer.

Question Five

a) For each of the following species, determine overall geometry, molecular geometry and hybridization of atomic orbitals around the central atom.
i) $\quad \mathrm{SOF}_{4}$
ii) XeF_{4}
[8]
b) Consider the molecule $\mathrm{XeO}_{3} \mathrm{~F}_{2}$, where Xe is the central atom.
i) Write at least four non-equivalent Lewis (i.e. resonance) structures.
ii) Use formal charges to determine which one of the structures from i) above is expected to be the most stable.
c) Draw a Lewis structure for each of the following, after determining the value of x :
(i) The cyclic silicate ion, $\mathrm{Six}_{\mathrm{x}} \mathrm{O}_{12}{ }^{8-}$
(ii) The cyclic silicate ion, $\mathrm{Si}_{\mathrm{x}} \mathrm{O}_{18}{ }^{12-}$

Question Six

a) Consider the elements $\mathrm{Li}, \mathrm{Be}, \mathrm{B}, \mathrm{N}, \mathrm{F}, \mathrm{Ne}$.
i) Which ones exist as diatomic molecules in the gaseous state at room temperature?
ii) Which ones form a chloride of formula $\mathrm{XC1}_{3}$?
iii) Which one has largest first ionisation energy?
iv) Which has the smallest second ionisation energy?
v) Which ones form hydrides that dissolve in water to give an alkaline solution?
vi) Which one forms an amphoteric hydroxide?
b) Element Y has an atomic number of 31 . Use your knowledge of chemical periodicity to answer the following questions about Y.
i) Write the electronic (s, p, d, f) configuration for Y.
ii) Is element Y in the' s-block', 'p-block' or'd-block'?
iii) What is the principal oxidation number of Y ?
iv) What is the probable formula of the oxide of Y ?
v) Is the oxide of Y likely to be acidic, amphoteric or basic?
vi) Write the equation for a reaction which the oxide of Y would undergo with an aqueous solution of sodium hydroxide.
c) Each compound in list 1 has a matching description in list2. Correctly match the partners. There is only one correct statement for each compound.

List 1

K
F_{2}
$\mathrm{Be}(\mathrm{OH})_{2}$
CaO
AsH_{3}
BeCl_{2}
CsO_{2}
$\mathrm{Ca}(\mathrm{OH})_{2} / \mathrm{NaOH}$

List 2

Polymeric in the solid state
Soda lime
A superoxide
A covalent hydride
Reacts with water violently
Amphoteric
Quicklime
A strong oxidizing agent
d) Briefly discuss the diagonal relationship between Be and Al. Give two examples of chemical properties that illustrate their similarities.

C201 Data

Slater's Rules:

1) Write the correct electron configuration for the atom and organize the orbitals into groupings as follows:
$(1 s)(2 s, 2 p)(3 s, 3 p)(3 d)(4 s, 4 p)(4 d)(4 f)(5 s, 5 p)$, etc
2) Any electrons to the right of the electron of interest contributes zero to shielding.
3) All other electrons in the same grouping (or same principal quantum number, \mathbf{n}) as the electron of interest shield to an extent of 0.35 nuclear charge units
4) If the electron of interest is an s or p electron:

Each of the electrons with one less value ($\mathbf{n} \mathbf{- 1}$) of the principal quantum number shield to an extent of 0.85 units of nuclear charge. Each of the electrons with two less values ($\mathbf{n}-2$) of the principal quantum number shield to an extent of 1.00 units.
5) If the electron of interest is an d or f electron:

Each of the electrons to the left shield to an extent of 1.00 units of nuclear charge.
6) Sum the shielding amounts from steps 2 through 4 or 5 and subtract from the nuclear charge value to obtain the effective nuclear charge:

$$
Z_{\mathrm{cff}}=\mathrm{Z}-\mathrm{S}
$$

where
$Z_{\text {eff }}=$ effective nuclear charge
$\mathrm{Z}=$ atomic number
$S=$ shilelding constant

PERIODIC TABLE OF THE ELEMENTS
GROUPS

PERIIODS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	IA	IIA	Iİ	ive	vB	VIB	vile		vill		18	II6	IIIA	IVA	va	VIA	VIIA	VIIIA
1	$\begin{gathered} 1.008 \\ \mathbf{H} \end{gathered}$		TRANSITION ELEMENTS															$\begin{aligned} & 4.003 \\ & \mathbf{H e} \end{aligned}$
2	$\underset{3}{6.941}$	$\underset{4}{9.012}$											10.811 \mathbf{B}	$\begin{gathered} \hline 12011 \\ \mathbf{C} \\ 6 \end{gathered}$	$\left\|\begin{array}{c} 14.007 \\ \mathbf{N}^{7} \end{array}\right\|$	$\begin{gathered} 15.999 \\ \mathbf{8}_{8} \end{gathered}$	$\begin{array}{\|c} 18.998 \\ \mathbf{F} \\ \hline \end{array}$	$\begin{gathered} 20.180 \\ \mathbf{N e}_{10}^{20} \end{gathered}$
3	$\begin{aligned} & 22.900 \\ & \mathbf{N a}_{11}^{2} \end{aligned}$	$\begin{aligned} & \mathbf{2}_{12.305}^{\mathbf{M g}} \end{aligned}$											$\begin{array}{\|c} 26.982 \\ \mathbf{A l}_{13} \end{array}$	$\begin{gathered} 28.8855 \\ \mathbf{S i}_{14} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 30.9738 \\ \mathbf{1 5} \\ \mathbf{P}^{3} \end{array}$	$\underset{\mathbf{1 6}}{32.06}$	$\underset{17}{\mathrm{Cl}_{17}^{35.43}}$	$\begin{gathered} \begin{array}{c} 39.948 \\ \underset{18}{\mathrm{Ar}} \end{array}, ~ \end{gathered}$
4	$\begin{array}{\|c\|} \hline 39.0983 \\ \mathbf{K}_{19} \\ \hline \end{array}$	$\begin{aligned} & 4_{40.078}^{\mathrm{Ca}} \\ & \hline \end{aligned}$	$\begin{aligned} & 44.956 \\ & { }_{21}^{4} \mathbf{S c}^{4} \end{aligned}$	$\stackrel{47.88}{{ }_{4}^{48}} \underset{22}{ }$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline 50.945 \\ 23 \end{array}$	$\begin{array}{\|l\|l} \hline 51.996 \\ \mathrm{Cr}_{24} \end{array}$	$\underset{25}{\mathbf{S N}_{2}^{54.938}}$	$\begin{array}{\|l\|} \hline \text { S5.8.87 } \\ \hline \mathbf{F e} \end{array}$	$\begin{aligned} & \hline 58.933 \\ & \mathrm{C}_{27} \\ & \hline \end{aligned}$	$\begin{gathered} \substack { 58.69 \\ \begin{subarray}{c}{28{ 5 8 . 6 9 \\ \begin{subarray} { c } { 2 8 } } \\ {\hline} \end{gathered}$	$\begin{aligned} & \substack{63.546 \\ \mathrm{Cu}_{29} \\ \hline} \end{aligned}$	$\begin{aligned} & 65.39 \\ & \mathbf{Z}_{30} \end{aligned}$	$\begin{gathered} 69.723 \\ \mathbf{G}_{31} \end{gathered}$	$\begin{aligned} & { }^{72,61} \\ & \mathbf{G e}_{32} \end{aligned}$	$\begin{gathered} \hline 74.922 \\ \mathbf{A s}_{33} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 78.96 \\ \text { Se } \\ \hline \end{array}$	$\begin{array}{\|c} \hline 79.904 \\ \hline \mathbf{B r} \\ \hline 35 \\ \hline \end{array}$	$\underset{36}{\underset{\sim}{83}} \underset{\sim}{83}$
5	$\begin{aligned} & \hline 85.468 \\ & \mathbf{R} \mathbf{R b} \\ & \hline 37 \\ & \hline \end{aligned}$	$\underset{38}{87.62}$	$\begin{gathered} 88.96 \\ \mathbf{8 8} 9 \\ \hline 39 \\ \hline \end{gathered}$	$\begin{gathered} 91.224 \\ \mathbf{Z 2} \\ 40 \end{gathered}$	$\underset{41}{\mid 92.2064} \mathbf{N b}_{4}$	$\begin{array}{\|c} 95.94 \\ \mathbf{M o} \\ \hline \mathbf{4 2} \end{array}$	$\begin{array}{\|c} \hline 98.907 \\ \mathbf{T c} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 101.07 \\ \mathbf{R u} \\ \hline \mathbf{4 4} \\ \hline \end{array}$	$\begin{array}{c\|} \hline 102.906 \\ \mathbf{R h} \\ 45 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 106.42 \\ \mathbf{P d} \\ 46 \end{array}$	$\begin{array}{\|c\|} \hline 107.868 \\ \mathrm{Ag} \\ 47 \end{array}$	$\underset{48}{\mathrm{C}_{48}^{12.41}}$	14.82 In 49	$\begin{aligned} & \substack{118.71 \\ \text { Sn } \\ 50} \end{aligned}$	$\begin{gathered} 121.75 \\ \mathbf{S}_{51} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 17.60 \\ & \text { Te } \\ & 52 \\ & \hline \end{aligned}$	$\begin{gathered} 126.904 \\ \mathbf{1} \\ 53 . \\ \hline \end{gathered}$	
6	$\begin{array}{\|c\|} \hline 132: 905 \\ \mathrm{Cs} \\ 55 \end{array}$		$\begin{array}{\|c} 133.906 \\ \text { * } \mathrm{La} \\ \hline \mathbf{y y} \\ \hline \end{array}$	$\stackrel{\substack{178.49 \\ \mathbf{H} \\ \hline}}{ }$	$\begin{array}{\|c\|} \hline 180.948 \\ \text { Ta } \\ 73 \end{array}$	$\stackrel{183.85}{{ }_{74}}$	$\begin{array}{\|c} \hline 186.207 \\ \mathbf{R e}_{75}^{180} \end{array}$	$\begin{gathered} 190.2 \\ { }_{76} \end{gathered}$	$\begin{array}{\|c} 192: 22 \\ \mathbf{I r}_{7} \\ \hline \end{array}$	$\underset{78}{\mathbf{P} 95.08}$	$\begin{array}{\|c\|} \hline 196.967 \\ \text { Au } \\ 79 \end{array}$	$\begin{array}{\|c} 200.59 \\ \mathbf{H g}_{80} \end{array}$	$\begin{array}{\|c\|} \hline 204.383 \\ T_{81} \end{array}$	$\underset{82}{\stackrel{207.2}{20}}{ }_{2}^{2}$	$\begin{gathered} 208.980 \\ \begin{array}{c} \mathbf{B i} \\ 83 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} (299) \\ \mathbf{P}_{84} \end{gathered}$		
7	$\stackrel{\stackrel{(223)}{\mathbf{F r}_{8}}}{ }$	$\begin{array}{\|c} \hline 226.025 \\ \mathbf{R a}_{88}^{2} \end{array}$	$\begin{array}{\|c\|} \hline(227) \\ { }_{89}{ }^{2} \mathrm{Ac} \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} (261) \\ \mathbf{R}_{104} \end{array} \end{aligned}$	$\underset{105}{\substack{1262)}}$	$\begin{aligned} & \text { (263) } \\ & \text { Unh } \\ & \hline 106 \end{aligned}$	$\begin{array}{\|c\|c\|} \hline(262) \\ \text { UnS } \\ \hline 107 \end{array}$	$\begin{gathered} \text { (265) } \\ \text { Uno } \end{gathered}$	$\begin{array}{\|c\|} \hline(266) \\ \text { Une } \\ \hline 109 \end{array}$									

- Lanthanide series
* Actinide series

$\begin{gathered} 140.115 \\ \text { Ce } \\ 58 \\ \hline \end{gathered}$	$\begin{gathered} 140.908 \\ \mathbf{P r} \\ 59 \\ \hline \end{gathered}$	144.24 Nd 60	$\stackrel{1}{\mathbf{P}}_{61}^{145)}$	$\mathrm{Sm}_{62}^{150.36}$	151.96 HI 63	157.25 Gd 64	$\underset{65}{158.925}$	${ }_{66}^{162.50}$	164.930 Ho 67	$\underset{68}{\mathbf{E} \mathbf{1 6 7 . 2 6}}$	168.934 Tm 69	$\begin{gathered} 173.04 \\ \mathbf{Y b} \\ 70 \end{gathered}$	${\underset{71}{174.967}}_{\mathbf{L I}^{2}}$
232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(25	(257)	(258)	(259)	(260)
Th	Pa	U	N	$\mathbf{P u}$	An	Cm	BK	Cf	Es	Fm	Md	No	LI
90	91	92	93	94	95	96	97	98	99	100	101	102	103

Numbers beiow the symbol of the element indicates the atomic
numbers. Atomic masses, above the symbol of the element, are
based on the assigned relative alomic mass of $2 \mathrm{C}=$ exactly 12 :
() indicates the mass number of the isotope with the longest
half-life.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantues, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications. Boston, 1988, pp 86-98.

Rydberg constant $=1.097 \times 10^{7} \mathrm{~m}^{-1}$

SI Unit Prefixes

p	n	μ	m	c	d	k	c	M
pico-	nano-	micro-	milli-	centi	deci-	kilo	mega-	giga-
10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10^{-1}		10^{3}	10^{6}

Conversions and Relationships

Length SI unit: meter, m	$\begin{gathered} \text { Volume } \\ \text { SI unit cubic meter, } \mathrm{m}^{3} \end{gathered}$	Pressure SI unit: pascal, Pa
$\begin{aligned} 1 \mathrm{~km} & =1000 \mathrm{~m} \\ & =0.62 \mathrm{mile}(\mathrm{mi}) \end{aligned}$	$\begin{aligned} 1 \mathrm{dm}^{3} & =10^{-3} \mathrm{~m}^{3} \\ & =1 \text { liter }(\mathrm{L}) \end{aligned}$	$\begin{aligned} 1 \mathrm{~Pa} & =1 \mathrm{~N} / \mathrm{m}^{2} \\ & =1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}^{2} \end{aligned}$
1 inch (in) $=2.54 \mathrm{~cm}$	$\therefore \quad=1.057$ quarts (qt)	$1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}$
$1 \mathrm{~m} \quad=1.094$ yards (yd).	$1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$	$=760$ torr
$1 \mathrm{pm}=10^{-12} \mathrm{~m}=0.01 \AA$	$1 \mathrm{~m}^{3}=35.3 \mathrm{ta}^{3}$,	$1 \mathrm{bax}=1 \times 10^{5} \mathrm{~Pa}$
Mass	Energy	Math relationships
SI unit: kilogram, kg	S1 unit: joule, J	$\pi=3.1416$
$1 \mathrm{~kg} \quad=10^{3} \mathrm{~g}$	$1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$	volume of sphere $=\frac{4}{3} \pi r^{3}$
1 metric ton (t) $=10^{3} \mathrm{~kg}$	$\mathrm{l} \mathrm{cal}=4.184 \mathrm{~J}$.	

