UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATIONS

ACADEMIC YEAR 2015/2016

TITLE OF PAPER:	INTRODUCTORYINORGANIC CHEMISTRY
COURSE NUMBER:	C201
TIME ALLOWED:	THREE (3) HOURS
INSTRUCTIONS:	THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

1

Question one

- What is the physical significance of a radial wave function R(r)? If a wave function of a hydrogen atom is given by $\psi = (27-18\dot{b} + 2b^2)\exp(-b/3)$ where $b=Zr/a_0$, give the expression for each of the following: i) radial part ii) angular part iii) radial distribution function. . . For the wavefunction of a $6dx^2-y^2$ orbital, sketch the diagram corresponding to radial part i) ii) radial distribution function iii) angular part
- d) For each of the following species, write the electron configuration and determine the number of unpaired electrons present:
 - i) Re²⁺ Nd²⁺ ii)

11-

:

a)

b)

c)

[8]

[4]

[6]

e) Briefly state the de Broglie hypothesis. Your answer should include the appropriate equation. Briefly explain how the hypothesis has contributed to understanding of the properties of an electron.

[6]

2

[1]

Question Two

a) Consider the species Ga, Ga^+ and Ga^{2+} .

. 1

- i) For each of the species above, calculate the effective nuclear charge for an electron in the valence shell [12]
- Based on your calculated effective nuclear charge values, which of the species is expected to have the lowest ionization energy? Explain.
 [2]
- b) Consider the molecule IO_2F_3 , where iodine, I, is the central atom.
 - i) Draw at least three non-equivalent Lewis structures of the molecule
 - ii) Use formal charges to determine which one of the structures you have drawn is the most reasonable.

Question Three

- a) For each of the following species, determine the molecular geometry and suggest an appropriate hybridization scheme for the central atom:
 - a) F_2O (O is the central atom)
 - b) SF₄
 - c) BrF_5 (Br is the central atom)

[12]

[11]

- b) Consider the diatomic molecule C₂. Using <u>valence atomic orbitals and valence</u> <u>electrons only</u>, answer the following questions:
 - i) Prepare a molecular orbital energy level diagram for the molecule, C₂. [Note that the diagram should not be filled with any electrons at this point].
 - ii) Use the diagram in i) above to give electron configurations for C_2 and $C_2^{2^2}$.
 - iii) For each of the species, determine the number of unpaired electrons and indicate whether the species is paramagnetic or diamagnetic.
 - iv) For each of the species, calculate the bond order, and indicate which one is expected to have a stronger bond and which one is expected to have a shorter bond

[13]

Question Four

a) With the help of appropriate structures, suggest the nature of hydrogen bonding present in the following species:

i) Hydrogen fluoride, HF

4

••

- ii) CH₃OH
- iii) A carboxylic acid RCOOH
- iv) $CH_3C(=O)NH_2$, an amide

[9]

- b) Use balanced equations to illustrate what happens when the following species are dissolved in water:
 - i) K₂O
 - ii) $A\ell_4C_3$
 - iii) Cl₂O₇

[6]

c) For each of the following, sketch the structure and indicate the coordination number around the Lewis acid:

i) $[BF_4]^-$ ii) $Be^{2+}(aq)$ iii) SiF_6^{2-}

iv) Na⁺(aq)

[10]

Question Five

. · ,

a) For each of the groups (of the periodic table) given below, state the common oxidation state(s) which occur in oxides, and give the formula, M_xO_y, of each of such oxides:

i) group 1 ii) group 2 iii) group 13 iv) group 14 v) group 15 [6]

b) Give a balanced equation for a reaction that is expected to take place when each of the following chlorides is added to water:

· · .

a)

i) SiCl₄ ii)
$$PCl_5$$
 iii) $HCl(g)$ [6]

- c) Give one example of an oxide and write a balanced reaction equation to illustrate its property as indicated below.
 - i) An acidic oxide that is soluble in water and show how it reacts with water
 - ii) A basic oxide that is soluble in water and show how it reacts with water
 - iii) An amphoteric oxide and show how it reacts with an acid and a base

Question Six

Identfy the species A, B, C, D, E, F, G, H, I, J and K:

- $CaC_2 + A$ i) $Ca(OH)_2 + B$ **C** + H₂ ii) CaH_2 **D** + heat BaO+ E iii) $Cl_2(aq) + F \longrightarrow$ iv) $G + Br_2(aq)$ $SiCl_4 + H_2O \longrightarrow$ V) H + I $\mathbf{J} + \mathbf{K}^{+}$ vi) $Ca(OH)_2 + AsH_3$ [11]
- b) Give an outline of the Born-Haber cycle for the formation of indium chloride, InCl₃(s). [8]
- c) From a theoretical approach, give three factors that contribute to lattice energy of an ionic compound. Briefly <u>explain how</u> each factor affects lattice energy.

[6]

[13]

5

C201: Slater's Rules:

1) Write the correct electron configuration for the atom and organize the orbitals into groupings as follows:

(1s)(2s,2p)(3s,3p) (3d) (4s,4p) (4d) (4f) (5s,5p), etc

2) Any electrons to the right of the electron of interest contributes zero to shielding.

3) All other electrons in the same grouping (or same principal quantum number, \mathbf{n}) as the electron of interest shield to an extent of 0.35 nuclear charge units

4) If the electron of interest is an *s* or *p* electron:

All electrons with one less value (n-1) of the principal quantum number shield to an extent of 0.85 units of nuclear charge per electron. All electrons with two less values (n-2) of the principal quantum number shield to an extent of 1.00 units per electron.

5) If the electron of interest is a d or an f electron:

All electrons to the left shield to an extent of 1.00 units of nuclear charge.

6) Sum the shielding amounts from steps 2 through 5 and subtract from the nuclear charge value to obtain the effective nuclear charge:

 $Z_{eff} = Z - S$

where

 $Z_{eff} = effective nuclear charge$

Z = atomic number

S = shilelding constant

Fundamental Physical Constants (six significant figures)

그는 것은 아이는 것은 것을 수 없다. 그 것은 것은 것을 것을 수 있는 것을 가지 않는 것을 수 있는 것을 것을 수 있는 것을 수 있다. 것을 것을 것을 수 있는 것을 수 있는 것을 수 있는 것을 것을 수 있는 것을 수 있는 것을 것을 수 있다. 것을	
Avogadro's number	$N_{\rm A} = 6.02214 \times 10^{23} / {\rm mol}$
atomic mass unit	$amu = 1.66054 \times 10^{-27} \text{ kg}$
charge of the electron (or proton)	$e = 1.60218 \times 10^{-19} \mathrm{C}$
Faraday constant	$F = 9.64853 \times 10^4 \text{ C/mol}$
mass of the electron	$m_e = 9.10939 \times 10^{-31} \text{ kg}$
mass of the neutron	$m_n = 1.67493 \times 10^{-27} \text{ kg}$
mass of the proton	$m_{\rm p}$; = 1.67262×10 ⁻²⁷ kg
Planck's constant	$h = 6.62607 \times 10^{-34} \text{J} \cdot \text{s}$
speed of light in a vacuum	$c = 2.99792 \times 10^8 \mathrm{m/s}$
standard acceleration of gravity	$g = 9.80665 \mathrm{m/s^2}$
universal gas constant	R = 8.31447 J/(mol·K)
그는 것 같은 것 같	$= 8.20578 \times 10^{-2} (\text{atm} \cdot \text{L}) / (\text{mol} \cdot \text{K})$

Rydberg constant = $1.097 \times 10^7 \text{ m}^{-1}$

SI Unit Prefixes

しょうてい	All of the second s	2011 - EE E - E - E	그 프로그램에서 이 가지?		ಿ ಲಿಸಿ ಎಲ್ಲಿ ತಿಲಿಗ	Carl March 1994	あった イン・ショウ・ション	and the state of an and a	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	いってん 何だ さいろう	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 지수는 상태 영양이다.	1.1.1	いいざい かいがが	こんしゃ マクション
1.21.6	경험 그는 너무 가운데는 것이야?	in a naithe	じかん キー・シーカー おん		18 X.C. (L.C.)	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		- EPC - 1 1 200 332	4R	del Charles Station	ですばくさいたい	 1.1.2.2.3.4 GeV 	紧张的 法问题的 计	100 C C C C C C C C C C C C C C C C C C	- 3 . ¹⁰
	에 가슴 모양 나는 사람이 많다.	지금 지금 문 문	「おこうないらいため」				1. S.	. S.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 A. A. A	Sec. Sec.	and the second second	가 있는 것 같은 것 같이 많이	55	1721 - 194 1
	가지 이 가지 않는 것이 같아요?	1		10.11 (1.10.11) F	1. Sec.		A Bruch Hickory	A			835 Y 66 W 8 8	이 같은 책 가 가 가	한 책 집에 도둑다.	1 ST 1 ST 53 ST	1 - 1 - 1
	아이에는 이 같은 것이 같은 것이 같이 있다. 이 것		いさいこうせいい		A 1. C		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1	する たい くさぶり	A	19. mar. 6.	것 이 생각 20		11 a 44 100	- · · · · ·
5 k.	n ()	Th	N 18 18 19 19		9 - 13 17 11 1 8 19			1 - C - C - C - C - C - C - C - C - C -	1. Sec. 7. Part of the	1	1. A.		NA 38 120 100	S. 1	14
S. 20	P.J. 2011 R. 6. 76.	シーズ 希告 ていた くたい			are an an an an an ar an					1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	State in the			
10 M 10		05	1	e later i e c'han e de				and the second second second	100 C 200 C 100	1.1.1	「「「「「「「「「」」」の「「」		1.2.2	and the second second	
St 11 1941							ゆう いいざい ひょうかいしん	1 10 Y 31 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37 / J [.] W. W. J. S.		1. 1. 1. No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
· · · · · · · · · · · · · · · · · · ·							- 1 A A A A A A A A A A A A A A A A A A	 Y and the second se 		N. 10. 10 (A. Contract 1)	and the second	(1) 1.675 (20) - 0.6	1 KE 16 K		
14 N	nico-	<i></i>		ioro i	and maile	14 C	centi	1. A. 1. A. A.	leni 🍋	2 C C 2 C L	il na star	이 영양 영화	meas-		ຕຳຕ່າ -
たが	DICO-	папо-	i n	icro-	- mill	1-	centi	+	deci-	l sa k	ilo-	687	mega-		giga- i
in,	pico-	папо-	្រុះព្រ	icro-	- mill	1-	centi		deci-	∖ k	ilo- 🔬		mega-	9 9 9 V	giga- į
	pico-	папо-	m	icro-	< mill	1-	centi		deci-	k	ilo-		nega-		giga-
	$pico-10^{-12}$	nano-	n N	ucro-		1. 3	centi		deci-	k I	ilo- 03		mega-		giga-
	pico- 10 ⁻¹²	папо- 10 ⁻⁹	n 1	ucro-	mill 10	1- 3	centi 10 ⁻²		deci- 10 ⁻¹	· · · · k	ilo- 0 ³		mega- 10 ⁶		giga- 10 ⁹
	pico- 10 ⁻¹²	папо- 10 ⁻⁹	m 1	ucro- 0 ⁶	- mill 10	1. ≯	centi 10 ⁻²		deci- 10 ¹	, k 1	ilo- 0 ³		mega- 10 ⁶		giga- 10 ⁹
	pico- 10 ⁻¹²	папо- 10 ⁻⁹	m 1	ucro- 0 ⁶	mill 10	l+ 3	centi 10 ⁻²		deci- 10 ⁻¹	, k	ilo- 0 ³		mega- 10 ⁶		giga- 10 ⁹

Conversions and Relationships

SI 1	Length unit: meter, m
1 km	= 1000 m
	= 0.62 mile (mi)
1 inch (in)	= 2.54 cm
lm	= 1.094 yards (yd)
1 pm	$= 10^{-12} \text{ m} = 0.01 \text{ Å}$
يهامه فيبكنك فينادد الا	للمكلك بالكيليك والكلام والكلام والكيمين أعاليات مبوات والمارك أرار

e e	Lunit	Mas	S) Va
l kg		, NUU	= 10	љ8 З д
			= 2.	205 Ib
1 m	etric t	on (t)	= 10	³ kg

Volume	
$1 \text{ dm}^3 = 10^{-3} \text{ m}^3$	
= 1 liter (L) = 1.057 quarts (qt)	
$1 \text{ cm}^3 = 1 \text{ mL}$ $1 \text{ m}^3 = 35.3 \text{ ft}^3$	
weiter bestammen ihreiten soneren ihren ihren	

	CT.	Ener	'8Y oule	T	
1 J	= 1 k	g·m²/	s ²	an an Salara Salara	
1 cal	= 1 c = 4.1	oulon 84 J	ıb•vo	lt (1	C·V
.1 eV	= 1.6	02×1	0 ⁻¹⁹	J 🤇	

́ П	emperat	ture	
- 21	unit: keiv	/ID, K	
0 K .	= -273	5.15°C	
mp of H ₂) = 0°C (273.151	ζ)
bp of H ₂ C	$= 100^{\circ}$	C (373.1	5 K)
T (K)	= T (°C) + 273	.15
T (°C)	$= [T (^{\circ}]$	F) - 321	ş
$T(^{\circ}F)$	$= \frac{9}{7}T$ (°(C) + 32	55
			1949 (N

 Pressure

 SI unit: pascal, Pa

 $1 Pa = 1 N/m^2$
 $= 1 kg/m \cdot s^2$
 $1 atm = 1.01325 \times 10^5 Pa$

 = 760 torr

 $1 bar = 1 \times 10^5 Pa$

Math relationships $\pi = 3.1416$ volume of sphere $= \frac{4}{3}\pi r^3$ volume of cylinder $= \pi r^2 h$

PERIODIC TABLE OF THE ELEMENTS

GROUPS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIII		IB	IIB	iilA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1		_															4.003 He 2
2	6,941 Li 3	9.012 Be 4		10.811 12.011 14.007 15.999 18.998 20 B C N O F J 5 6 7 8 9 J													20.180 Ne 10	
3	22.990 Na 11	^{24.305} Mg 12		26.982 28.0855 30.9738 32.06 35.453 39.9 Al Si P S Cl A 13 14 15 16 17 1												39.948 Ar 18		
4	39.0983 K 19	40.078 Ca 20	44.956 Sc 21	47.88 Ti 22	50.9415 V 23	51.996 Cr 24	54.938 Mn 25	55.847 Fe 26	58.933 Co 27	58.69 Ni 28	63.546 Cu 29	65.39 Zn 30	69.723 Ga 31	72.61 Ge 32	74.922 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.468 Rb 37	87.62 Sr 38	88.906 Y 39	91.224 Zr 40	92.9064 Nb 41	95.94 Mo 42	98.907 Tc 43	101.07 Ru 44	102.906 Rh: 45	106.42 Pd 46	107.868 .Ag 47	112.41 Cd 48	114.82 In 49	118.71 Sn 50	121.75 Sb 51	127.60 Te 52	126.904 I 53	, 131.29 Xe 54
6	132.905 CS 55	137.33 Ba 56	138.906 *La 57	178.49 Hf 72	180.948 Ta	183.85 W 74	186.207 Re 75	190.2 OS 76	192.22 Ir,	195.08 Pt 78	196.967 Au 79	200,59 Hg	204.383 Tl 81	207.2 Pb 82	208.980 Bi 83	(209) Po 84	(210)2 At 85	(222) Rn 86
: 7	(223) Fr 87	226.025 Ra 88	(227) **Ac 89	(261) Rf 104	(262) Ha 105	(263) Unh 106	(262) Uns 107	(265) Uno 108	(266) Une 109						· .			
*Lanthanide series 140.115 140.908 144.24 (145) 150.36 151.96 157.25 158.925 162.50 164.930 167.26 168.934 173.04 174.967 Ce Pr Nd Pm Sm Eu 63 64 65 65 66 67 68 69 70 71								174.967 Lu 71										
** Actinide s	eries			232.038 Th 90	231.036 Pa 91	238.029 U 92	237.048 Np 93	(244) Pu 94	(243) Am 95	(247) Cm 96	(247) Bk 97	(251) Cf 98	(252) Es 99	(257) Fm 100	(258) Md 101	(259) No 102	(260) Lr 103	

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of $^{12}C =$ exactly 12; () indicates the mass number of the isotope with the longest half-life.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., *Quantities*, *Units, and Symbols in Physical Chemistry*, Blackwell Scientific Publications, Boston, 1988, pp 86-98.

1.1