JULY 2016 SUPPLEMENTARY EXAMINATION

TITLE OF PAPER		INTRODUCTION TO ANALYTICAL CHEMISTRY
COURSE NUMBER	:	C204
time	:	3 HOURS
Important Information	:	1. Each question is worth 25 marks.
		2. Answer any four (4) question in this paper
		3. Marks for ALL procedural calculations will be awarded.
		4. Start each question on a fresh page of the answer sheet.
		5. Diagrams must be large and clearly labelled accordingly.
		6. This paper contains an appendix of chemical constants.
		7. Additional material : graph paper.

[^0]
QUESTION 1 [25MARKS]

a) A young scientist determined the amount of Riboflavin (Vitamin B 2) in a cereal sample by measuring its fluorescence intensity in 5\% acetic acid solution. A calibration curve was prepared by measuring the fluorescence intensities of a series of standards of increasing concentrations. The concentration of the standard was found to be 10.0 ppm . Explain in detail TWO ways which the young scientists can use to show that the method and instrument used for measurements gives accurate results. (Give a detailed explanation how this would be achieved) (6)
b) The following data was obtained from the analysis of a sample in ppm;

26	25	24	26	15

i) Should the value ' 15 ' be considered part of the data at 95% confidence interval? (4)
ii) Using another method, the values obtained for the same analysis yields the following:

33	26	25	35	33

Do the two methods give the same result at the 95% confidence level? (5)
iii) Comment on the accuracy of the second method at 95% confidence level, if the 'true' value is 32 ppm .
(5)
iv) Can the precision of the two methods be considered the same? Explain. (5)

QUESTION 2 [25 MARKS]

a) You have just been employed as an analytical chemist at RSSC, in charge of soil chemistry analysis. It is alleged that a certain plantation with an area of lha has an excess of toxic element Arsenic from the application of a certain herbicide. Briefly
outline the steps you would undertake for quantitave analysis of soil in the affected plantation. Explanation should include, but not restricted to,
i) Sampling
ii) Quality control
iii) Method validation
iv) Data analysis and interpretation
(6)
b) An atomic absorption method for the determination of copper content in fuels yielded a pooled standard deviation of spooled $=0.32 \mu \mathrm{~g} \mathrm{Cu} / \mathrm{mL}(\mathrm{s} \rightarrow \sigma)$. The analysis of the oil from a reciprocating aircraft engine showed a copper content of $8.53 \mu \mathrm{~g} \mathrm{Cu} / \mathrm{mL}$.
i) Calculate the 99% confidence limits for the result based on a mean of four (4) analyses. (4)
ii) Explain in your own words what the confidence limits calculated in (i) mean (2)
iii) How many replicate measurements are necessary to decrease the 99% confidence for the analysis to $\pm 0.20 \quad \mu \mathrm{~g} \quad \mathrm{Cu} / \mathrm{mL}$? (3)
c) One of the challenges in the quantification of elements is the problem of interferences. Explain what is meant by interferences giving a specific example and a solution on how this interference can be eliminated in analytical chemistry. (4)
d) What is 0.21 ppm CO in $\mathrm{mol} / \mathrm{L}$
e) Using examples differentiate between quantitative and qualitative analysis in analytical chemistry. (4)

QUESTION 3 [25 MARKS]

a) Calculate the pH of an aqueous buffer solution made from $0.150 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ and $0.100 \mathrm{M} \mathrm{NH}_{3}$. [3]
b) Find the pH at each of the following points in the titration of 25 mL of 0.3 M HF with 0.3 M NaOH .

The initial pH
After adding 10 mL of 0.3 M NaOH
After adding 12.50 mL of 0.3 M NaOH
After adding 25 mL of 0.3 M NaOH
After adding 26 mL of 0.3 M NaOH

Draw the titration curve and clearly show the equivalence point and buffer region. (5 marks)
c) How will the titration curve drawn in (b) differ from that of the titration of 0.3 M HCl with 0.3 M NaOH ? Include sketch diagrams to explain. [4]
d) One of the challenges in the quantification of elements is the problem of interferences. Explain what is meant by interferences giving a specific example and a solution on how this interference can be eliminated in analytical chemistry. [4]

OUESTION 4 [25 MARKS]

a) What are the assumptions that are made in the establishment and application of the least squares method?
b) A calibration graph was prepared as part of a validation procedure for a new method to determine an active constituent of a sun cream by UV spectrophotometry. The following data were obtained;

Analyte Concentration $(\mathrm{mg} / \mathrm{cm} 3)$	0							
UV absorbance at 325 nM	0.095	0.227	0.409	0.573	0.786	0.955	1.123	0.350

i) Check for the linearity of the data.
ii) Use the method of least squares regression analysis of the data to calculate the concentration of the unknown.
(15 Marks)
c) In a bid to improve suppressed analytical signal, an analyst performs a standard additions procedure on soil samples for the analysis of manganese. Outline the experimental procedure for performing standard additions, using diagrams where applicable to illustrate.
(5)
d) What are the advantages of using standard addition over external calibration?

QUESTION 5 [25MARKS]

a) A student was asked to determine the concentration of ammonia, a volatile substance, in a commercially available cloudy ammonia solution used for cleaning. First the student pipetted 25.00 mL of the cloudy ammonia solution into a 250.0 mL conical flask. 50.00 mL of $0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}_{(\mathrm{aq})}$ was immediately added to the conical flask which reacted with the ammonia in solution. The excess (unreacted) HCl was then titrated with $0.050 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})} .21 .50 \mathrm{~mL}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}$ was required.
i) Calculate the concentration of the ammonia in the cloudy ammonia solution. (6)
ii) The method in (a) is known as back titration. Give four (4) purposes of back titration i.e. cases which would require the use of back titration instead of direct titration. (4)
a) In titrimetry;
i) Differentiate between primary standard and a secondary standard for titrimetric analysis (2)
ii) Explain what is meant by standardization and give one example of a primary standard used in acid-base titration to standardize HCl and one to standardize NaOH which you have used in the laboratory during your C 204 experiments. (4)
iii) Give four (4) desirable properties for a primary standard used for titration purposes. (4)
b) Describe how 2.00 L of $0.0500 \mathrm{M} \mathrm{AgNO}_{3}$ can be prepared from a primary grade solid of AgNO_{3}. (5)

QUESTION $6[25$ MARKS]

a) The concept of CRM and or SRM is widely used by industry for their quality control measures. Briefly explain;
i) What are CRM or SRMs (2)
ii) What is their central role in analytical chemistry? (2)

How are they certified? (4)
b) Distinguish between sample mean and population mean (2)
c) In the determination of chlorine by Fajan's titration in samples,
i) Name the common adsorption indicator used in this titration. (2)
ii) What is the reason for the addition of dextrin before titration? (2)
d) An iron ore was analysed by dissolving a 1.1324 g sample in concentrated HCl . The resulting solution was diluted with water, and the iron (III) was precipitated as the hydrous oxide $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ by the addition of NH_{3}. After filtration and washing, the residue was ignited at a high temperature to give 0.5394 g of pure $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

Calculate

i) The $\% \mathrm{Fe}$ in the sample
ii) The $\% \mathrm{Fe}_{3} \mathrm{O}_{4}$ in the sample. (6)
e) i) What is meant by 'digestion of a precipitate'? Briefly describe what happens in the process of digesting a precipitate and give two (2) advantages of this step during gravimetric analysis. (3)
ii) What is peptization? How can this phenomenon be avoided during gravimetric analysis (2)

APPENDIX

Useful Formulas

$$
r=\frac{n \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{\sqrt{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}\left[n \sum y_{i}^{2}-\left(\sum y_{i}\right)^{2}\right.}}
$$

TABLES

TABLE 1: Table of Acid and Base Strength

$k_{\omega}=1 \times 10^{-14}$

Table 2: The Q- Table

Number of Observations	90% Confidence	95\% Confidence	99% Confidence
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568

Table 3: T- Table

VALUES OF \boldsymbol{t} FOR VARIOUS LEVELS OF PROBABILITY					
Degrees of Freedom	Factor for Confidence Interval				
	80\%	90\%	95\%	99\%	99.90\%
1	3.08	6.31	12.7	63.7	637
2	1.89	2.92	4.3	9.92	31.6
3	1.64	2.35	3.18	5.84	12.9
4	1.53	2.13	2.78	4.6	8.6
5	1.48	2.02	2.57	4.03	6.86
6	1.44	1.94	2.45	3.71	5.96
7	1.42	1.9	2.36	3.5	5.4
8	1.4	1.86	2.31	3.36	5.04
9	1.38	1.83	2.26	3.25	4.78
10	1.37	1.81	2.23	3.17	4.59
11	1.36	1.8	2.2	3.11	4.44
12	1.36	1.78	2.18	3.06	4.32
13	1.35	1.77	2.16	3.01	4.22
14	1.34	1.76	2.14	2.98	4.14

Table 4: Z- Table

Confidence Level, \%	2
50	
68	1.00
90	1.28
90	1.64
95	1.96
95.4	2.00
99.7	
99.9	3.58

Table 5: F- Table

Contical whe of 5 at tser confidence Wred

Degrees of						Degre	cof	dom						
freedon fors?	2	3	1	5	6	7	8	9	10	12	15	20	30	\%
2	19.0	10.2	19.2	10.3	10.3	14.1	14.4	19.4	19.4	14.1	19.4	19.4	19.5	19.5
3	9.55	9.28	9.12	9.01	8.94	3.89	8.84	. 8.81	879	8.74	8.70	8.66	8.62	8.53
1	6.94	6.59	6.39	6.26	6.15	6.09	6.01	6.00	5.9\%	5.91	5.86	5.80	5.75	5.63
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.63	4.62	4.56	4.50	4.36
6	5.34	4.76	4.53	4.39	4.25	421	4.15	4.10	4.06	4.01	394	3.87	3.81	3.67
7	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.53	351	3.44	3.38	327
8	4.46	4.05	3.54	3.67	3.53	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.08	2.93
9	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.86	2.71
10	4.0	3.71	3.48	1.33	3.22	3.14	3.07	3,02	2.98	2.91	2.84	2.7\%	270	2.5
11	3.98	3.59	3.36	3.30	3.10	301	2.95	2.90	2.85	2.79	2.72	2.65	2.57	2.40
12	S. 88	3.4	3.26	3.11	3.00	2.91	285	280	275	2.69	262	2.54	2.47	2.3)
13	38:	; 41	718	103	202	283	277	771	267	260	253	2 46	2.18	231
14	3.74	3.34	3.11	2.96	285	276	270	2.65	3.60	2.53	246	2.39	2.31	2.13
15	3.06	3.20	5.06	290	2.74	2.71	2.64	2.59	2.54	2.43	2.40	2.33	2.25	2.07
16	\% 3.63	3.24	7.11	385	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.19	2.11
17	3.54	3.20	2.46	2.81	2.70	2.61	2.55	2.49	2.45	2.35	2.31	2.23	2.15	1.16
18	3.96	3.16	2.93	2.7?	2.66	2.88	2.51	2.46	2.41	2.34	2.27	2.19	2.11	1.92
19	3.52	3.1 \%	2.90	2.4	2.67	254	218	2.12	2.38	231	2.23	2.16	2.07	1.88
20	3.49	3.10	2.87	271	2.63	251	2.45	2.30	2.35	2.23	220	2.12	2.04	1.84
30	3.32	2.92	269	253	2.42	233	2.27	2.21	2.16	2.09	2.01	1.93	1.84	1.62
*	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.16	1.00

Periodic Table of the Elements

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H 1.0079																	2 He 4.0026
$\begin{array}{\|c} 3 \\ 4.941 \\ 6.94 \end{array}$	$\begin{aligned} & 4 \\ & \mathrm{Be} \\ & 9.0122 \end{aligned}$											$\begin{array}{\|c} \hline 5 \\ \mathrm{~B} \\ 10.311 \\ \hline \end{array}$	$\begin{gathered} 6 \\ C \\ 12.011 \end{gathered}$	$\begin{aligned} & 7 \\ & \mathrm{M} \\ & \mathrm{M} .007 \end{aligned}$	$\int_{1}^{8} 0$	$\begin{aligned} & 9 \\ & \mathrm{~F} \\ & 18.998 \end{aligned}$	$\begin{array}{\|c} \hline 10 \\ \mathrm{Ne} \\ 20.180 \\ \hline \end{array}$
11 Na 22.990	12 Mg 24.305											13 AI 26.982	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.086 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.974 \\ \hline \end{gathered}$	$\left\lvert\, \begin{aligned} & 16 \\ & \cdot \mathbf{S} \\ & 32.066\end{aligned}\right.$	$\begin{gathered} 17 \\ \mathbf{C l} \\ 35.453 \end{gathered}$	18 Ar 39.948
$\begin{gathered} 19 \\ \mathrm{~K} \\ 39.098 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.078 \end{gathered}$	21 Sc 44.956	$\begin{aligned} & 22 \\ & \pi i \\ & 47.83 \\ & \hline \end{aligned}$	23 V 50.942	24 Cr 51.596	25 Mn 54.938	25 Fe 35.847	27 Co 58.933	28 Ni 58.69	29 Cu 63.546	$\begin{array}{\|c\|} \hline 30 \\ 2 n \\ 65.39 \\ \hline \end{array}$	31 Ga 69.723	32 Ge 72.61	33 As 74.922		35 Br 79.904	36 kr 83.80
$\begin{aligned} & 37 \\ & R b \end{aligned}$ 33.468	38 Sr 87.62	$\begin{array}{\|c} \hline 39 \\ Y \\ 88.906 \\ \hline \end{array}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ 91.224 \end{gathered}$	41 Nb 92.906	42 Mo 95.94	43 Tc (98)	44 Ru 2.71.07	45 Rh 102.91	46 Pd 105.42	47 Ag 107.87	$\begin{array}{\|c\|} \hline 48 \\ \mathrm{Cd} \\ 112.41 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 49 \\ \text { In } \\ 114.82 \\ \hline \end{array}$	50 Sn 118.71	51 Sb 121.75	$\begin{gathered} 52 \\ \text { Te } \\ 127.60 \\ \hline \end{gathered}$	$\begin{gathered} 53 \\ 1 \\ 126.90 \\ \hline \end{gathered}$	54 Xe 131.29
35 Cs 132.91	56 Ba 137.33	$\begin{array}{\|c\|} \hline 57 \\ \mathrm{La} \\ 138.91 \\ \hline \end{array}$	$\begin{aligned} & 72 \\ & \mathrm{Hy} \\ & 178.09 \end{aligned}$	$\begin{gathered} 73 \\ \mathrm{Ta} \\ 180.95 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 74 \\ \mathrm{~W} \\ 183.95 \\ \hline \end{array}$	75 Re 186.21	76 Os 190.2	$\begin{array}{\|l\|} \hline 77 \\ \text { Ir } \\ 192.22 \\ \hline \end{array}$	$\begin{gathered} 78 \\ \mathrm{Pt} \\ 195.08 \end{gathered}$	79 Au 196.97	' 80 Hg 200.59	81	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr 1223)	88 Ra 226.03	89 Ac 227.03	104 Rf (261)	105 Db (262)	$\begin{array}{\|c\|} \hline 106 \\ \mathrm{Sg} \\ (263) \end{array}$	107 Bh (262)	108 Hs (265)	109 Mt (266)	$\begin{array}{\|c\|} \hline 110 \\ \text { Ds } \end{array}$ (3)	111 Rg (7)							

0	90	91	92	93	94	95	96	97	98	99	100	101	102	103
:	Th	Pa	U	Np	Pu	Am	Cm	BK	Cf	Es	Fm	Md	No	Lr
苂	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

[^0]: You are not supposed to open this paper until permission has been granted by the Chief Invigilator

