UNIVERSITY OF SWAZILAND

FINAL EXAMINATION May 2016

TITLE OF PAPER: INORGANIC CHEMISTRY

COURSE NUMBER: C301

TIME ALLOWED: THREE (3) HOURS

INSTRUCTIONS: THERE ARE SIX (6) QUESTIONS.
ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

Question One

a) Name the following complexes:
(i) $\mathrm{Na}\left[\mathrm{HFe}(\mathrm{CO})_{4}\right]$
(ii) $\left[\mathrm{Co}{ }^{\text {III }}(\mathrm{en})_{3}\right]\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(iii) $\left[\mathrm{TaF}_{8}\right]^{3-}$
b) Write formula for the following complexes:
(i) Dinitratotetraaminecobalt(III) sulphate
(ii) Potassium tetrachlorocobaltate(II)
(iii) μ-hydroxobis[pentaamminechromium(III)] chloride
c) i) Define each of the following and an example:
I. Linkage isomers
II. Coordination isomers
ii) Amino acids can act as ligands towards transition metal ions. The simplest amino acid is glycine, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H}$. Draw the structure of the glycinate ligand, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2}^{-}$, acting as a bidentate ligand towards a metal ion M . Draw possible geometrical isomers arising from the square planar complex $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2}\right)_{2}$.
[7]

Question Two

a) Classify each of the following species as hard, soft, or borderline Lewis acids or bases. Which of the Lewis bases would prefer to form adducts with each of the acids? $\mathrm{Fe}^{3+}, \mathrm{I}^{-}, \mathrm{CH}_{3} \mathrm{~S}^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{Cu}^{+}, \mathrm{Hg}^{2+}$
b) Predict whether the equilibrium constant for each of the following reactions is expected to favour the forward reaction or the reverse reaction. Explain.
i) $\mathrm{Cdl}_{2}(\mathrm{~s})+\mathrm{CaF}_{2}(\mathrm{~s}) \neq \mathrm{CdF}_{2}(\mathrm{~s})+\mathrm{Cal}_{2}(\mathrm{~s})$
ii) $\mathrm{Cal}_{2}(\mathrm{aq})+\mathrm{Cu}_{2} \mathrm{O}$ (s) $\rightleftharpoons \mathrm{CaO}$ (s) $+2 \mathrm{Cul}(\mathrm{s})$
iii) $\mathrm{HgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq}) \rightleftharpoons \mathrm{HgS}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq})$
c) Give Lewis structures of two examples of each of the following:
i) Monodentate ligands with oxygen as the donor atom
ii) Monodentate ligands with nitrogen as the donor atom
iii) Chelating ligands
iv) Macrocyclic ligands containing at least four N donor atoms
v) Crown ether ligands
d) Consider a neutral ligand L whose structure is shown below. Based on your

$\mathrm{R}=\mathrm{Ph}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}_{-\mathrm{CH}}^{\left(\mathrm{CH}_{3}\right)_{2}}$
knowledge of coordination properties of chelating ligands, draw the structure of the complex $[\mathrm{CuCl}(\mathrm{L})]^{+}$.

Question Three

a) Consider the formation of a complex ion $\left[\mathrm{AlF}_{6}\right]^{3-}$ by reacting an aqua complex ion, $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$, with fluoride ions, F^{-}.
i) Write all the stepwise reactions involved in the formation of the complex ion $\left[\mathrm{AlF}_{6}\right]^{3-}$
[6]
ii) Write the overall reactions for steps 2, 4 and 6, and give corresponding expressions for overall stability constants β_{2}, β_{4}, and β_{6}
[6]
b) Calculate the CFSE for each of the two complexes, $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$. Justify your assumptions of high-spin or low-spin in each case.
[7]
c) Classify each of the following ligands as pi-acceptor or pi-donor ligands. For each case use suitable orbital diagrams to illustrate how bonding between the liand and a metal ion may take place.
i) CO
ii) $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{P}$

Question Four

a) Copper(II) complexes are typically blue with one visible absorption band in their electronic spectra whereas copper(I) complexes are generally colourless. Explain. Assign spectroscopic labels to the states involved in the transition for an octahedral Cu^{2+} complex. Your answer should include electronic configurations of $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{II})$ ions. [Help: Remember the "Hole" formalism relationship between d^{N} and d^{10-N}]
b) Aqueous solutions of $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ show absorptions at 17200 and $25600 \mathrm{~cm}^{-1}$ assigned to the ${ }^{3} \mathrm{~T}_{2 g} \longleftarrow{ }^{3} \mathrm{~T}_{1 g}(\mathrm{~F})$ and ${ }^{3} \mathrm{~T}_{1 g}(\mathrm{P}) \longleftarrow{ }^{3} \mathrm{~T}_{1 g}(\mathrm{~F})$ transitions respectively. Estimate values of B and Δ_{0} for the complex. Predict the position of the third absorption band $\left(v_{3}\right.$, in $\left.\mathrm{cm}^{-1}\right)$.
c) Complexes $\left[\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ are paramagnetic and diamagnetic, respectively. What does this tell you about their structures? Explain how you arrive at your answer.

Question Five

a) Use the accompanying flow-chart diagram (decision tree), to determine the correct point group symbol for each of the systems below.
i)

[3]
ii)

[3]
iii)

b) The structure of tetrafluorooxorhenium(VI), $\mathrm{ReOF}_{4}\left(\mathrm{C}_{4 v}\right.$ symmetry), can be diagrammed as below. Use the accompanying $\mathrm{C}_{4 \mathrm{v}}$ character table to carry out the following tasks. Let the basis set for internal bond displacement coordinates be $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$ with r_{1} being assigned to the $\mathrm{Re}=\mathrm{O}$ bond; and let $\mathrm{F}-\mathrm{Re}-\mathrm{F}$ bond angle displacement coordinates be θ_{1}, θ_{2}, θ_{3}, and θ_{4}. Use this information to answer questions that follow.

i) Using internal coordinates, determine the total reducible representation for Re-F stretching modes and decompose it into irreducible representations.
[Note: Use of Cartesian coordinates (x, y, z) for each atom is not necessary]
ii) Using internal coordinates, determine the total reducible representation for in-plane bending modes (involving <FReF angles only) and decompose it into irreducible representations.
iii) Determine symmetries and the number of allowed IR-active and Raman-active bands for the molecule due to Re-F stretching.
iv) Use the projection operator method to determine the SALCs for Re-F stretching vibrations and sketch them. For any doubly degenerate (E) representation present, generation of the first SALC for such a representation will suffice.

Question Six

a) Extraction of metals from minerals involves the use of a number of reductants (or oxidants) depending on the nature of the metal. Complete the following equations after identifying the reductant (R) or oxidant (Ox):
i) $\quad \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{R}$ \qquad
ii) $\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{Ox} \longrightarrow$
iii) $\mathrm{Ti}(\mathrm{s})+\mathrm{Ox}$ \qquad
b) Consider the elements $\mathrm{Sc}, \mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}$ and Fe
i) Write the electron configuration for each of the elements [3]
ii) Give the group oxidation number for each element
iii) Briefly, discuss the stability of group oxidation states for these elements.
[6]
c) If you were given a piece of gold and asked to dissolve it, state the type of reagent you would use. Give the reaction equation that accompanies the process.

END OF EXAMINATION

PERIODIC TABLE OF THE ELEMENTS

htp://www.chem.qmw.ac.uk/upac/atwt/table.html

1	18																
1																	2
	2											13	14	15	16	17	$\underset{40060}{\mathbf{H e}}$
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	$\mathbf{Z n}$	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.08	44.9559	47.88	50.9415	51.99	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
$\mathbf{R b}$	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	$\mathbf{R u}$	$\mathbf{R h}$	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	$\mathbf{R e}$	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	$\mathbf{R n}$
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Lr	$\mathbf{R f}$	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(269)						

Lanthanides:

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
38.906	140.12	140.908	144.24	(145)	150.36	151.96	157.25	58.92	162.50	61.930	167.26	166.934	173.04

Actinides:

89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	f	Es	Fm	Md	No
227.028	232.038	31.036	238.029	237	(244)	(243)))	(251)	52)	(257)	(258)	

d^{2} Tanabe-Sugano Diagram

The flow-chart (Decision tree) used for assigning point groups

C301: CHARACTER TABLES

Character table for $\mathrm{C}_{4 \mathrm{v}}$ point group

$\mathbf{C}_{\mathbf{4 v}}$	\mathbf{E}	$\mathbf{2} \mathrm{C}_{\mathbf{4}}(\mathbf{z})$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{2} \boldsymbol{\sigma}_{\mathbf{v}}$	$\mathbf{2} \boldsymbol{\sigma}_{\mathbf{d}}$	linear, rotations	Quadratic Functions
$\mathbf{A}_{\mathbf{1}}$	1	1	1	1	1	z	$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathbf{A}_{\mathbf{2}}$	1	1	1	-1	-1	R_{z}	
$\mathbf{B}_{\mathbf{1}}$	1	-1	1	1	-1		
$\mathbf{B}_{\mathbf{2}}$	1	-1	1	-1	1		$\mathrm{x}^{2}-\mathrm{y}^{2}$
\mathbf{E}	2	0	-2	0	0	$(\mathrm{x}, \mathrm{y})\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$(\mathrm{xz}, \mathrm{yz})$

C4v Point Group: Operations used to determine symmetry-adapted linear combinations (SALC's)

$\mathrm{C}_{4 \mathrm{v}}$	E	$\mathrm{C}_{4}{ }^{1}$	$\mathrm{C}_{4}{ }^{3}$	$\mathrm{C}_{2}=\mathrm{C}_{4}{ }^{2}$	$\sigma_{\mathrm{v}}(1)$	$\sigma_{\mathrm{v}}(2)$	$\sigma_{d}(1)$	$2 \sigma_{d}(2)$
$\widehat{\mathbf{O}} \mathbf{r i}_{\mathbf{i}}$								
$\widehat{\mathbf{O}} \theta_{i}$								

